Perturbations of Nonhyperbolic Algebraic Automorphisms of the 2-Torus

被引:0
|
作者
Grines, V. Z. [1 ]
Mints, D. I. [1 ]
Chilina, E. E. [1 ]
机构
[1] HSE Univ, Nizhnii Novgorod 603155, Russia
关键词
nonhyperbolic automorphism; 2-torus; orientable heteroclinic set;
D O I
10.1134/S0001434623070209
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
All nonhyperbolic automorphisms of the 2-torus are not structurally stable, and it is generally impossible to predict the dynamics of their arbitrarily small perturbations. In this paper, given a representative of each algebraic conjugacy class of nonperiodic nonhyperbolic maps, a one-parameter family of diffeomorphisms is constructed, in which the zero value of the parameter corresponds to the given map and the nonzero values, to Morse-Smale diffeomorphisms. According to results of V. Z. Grines and A. N. Bezdenezhnykh, a Morse-Smale diffeomorphism of a closed orientable surface which induces a nonperiodic action on the fundamental group has nonempty heteroclinic set. It is proved that, in all of the constructed families, the diffeomorphisms corresponding to nonzero parameter values have nonempty orientable heteroclinic sets in which the number of orbits is determined by the automorphism being perturbed.
引用
收藏
页码:187 / 198
页数:12
相关论文
共 50 条
  • [21] Dynamical properties of 2-torus parabolic maps
    Fu, Xin-Chu
    Chen, Fang-Yue
    Zhao, Xiao-Hua
    NONLINEAR DYNAMICS, 2007, 50 (03) : 539 - 549
  • [22] Dynamical properties of 2-torus parabolic maps
    Xin-Chu Fu
    Fang-Yue Chen
    Xiao-Hua Zhao
    Nonlinear Dynamics, 2007, 50 : 539 - 549
  • [23] Hilbert series of symplectic quotients by the 2-torus
    Herbig, Hans-Christian
    Herden, Daniel
    Seaton, Christopher
    COLLECTANEA MATHEMATICA, 2023, 74 (02) : 415 - 442
  • [24] A MINIMAL POSITIVE ENTROPY HOMEOMORPHISM OF THE 2-TORUS
    REES, M
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1981, 23 (JUN): : 537 - 550
  • [25] Multivalued Lyapunov functions for homeomorphisms of the 2-torus
    Le Calvez, Patrice
    FUNDAMENTA MATHEMATICAE, 2006, 189 (03) : 227 - 253
  • [26] Hilbert series of symplectic quotients by the 2-torus
    Hans-Christian Herbig
    Daniel Herden
    Christopher Seaton
    Collectanea Mathematica, 2023, 74 : 415 - 442
  • [27] Global minimizers for Tonelli Lagrangians on the 2-torus
    Schroeder, Jan Philipp
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2015, 7 (02) : 261 - 291
  • [28] NONDENSE ORBITS FOR ANOSOV DIFFEOMORPHISMS OF THE 2-TORUS
    Tseng, Jimmy
    REAL ANALYSIS EXCHANGE, 2016, 41 (02) : 307 - 314
  • [29] The stable norm on the 2-torus at irrational directions
    Klempnauer, Stefan
    Schroder, Jan Philipp
    NONLINEARITY, 2017, 30 (03) : 912 - 942
  • [30] Rotational chaos and strange attractors on the 2-torus
    Boronski, Jan P.
    Oprocha, Piotr
    MATHEMATISCHE ZEITSCHRIFT, 2015, 279 (3-4) : 689 - 702