SAMPLING THE X-RAY TRANSFORM ON SIMPLE SURFACES*

被引:3
|
作者
Monard, Francois [1 ]
Stefanov, Plamen [2 ]
机构
[1] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
[2] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
integral geometry; sampling; inverse problems; geodesic X-ray transform; Nyquist theory; RESOLUTION ANALYSIS; RADON-TRANSFORM; RECONSTRUCTION;
D O I
10.1137/22M1475272
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the problem of proper discretizing and sampling issues related to geodesic X-ray transforms on simple surfaces, and illustrate the theory on simple geodesic disks of constant curvature. Given a notion of band limit on a function, we provide the minimal sampling rates of its X-ray transform for a faithful reconstruction. In Cartesian sampling, we quantify the quality of a sampling scheme depending on geometric parameters of the surface (e.g., curvature and boundary curvature), and the coordinate system used to represent the space of geodesics. When aliasing happens, we explain how to predict the location, orientation, and frequency of the artifacts.
引用
收藏
页码:1707 / 1736
页数:30
相关论文
共 50 条
  • [1] THE NON-ABELIAN X-RAY TRANSFORM ON SURFACES
    Paternain, Gabriel P.
    Salo, Mikko
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2024, 126 (03) : 1185 - 1205
  • [2] INVERSION OF THE ATTENUATED GEODESIC X-RAY TRANSFORM OVER FUNCTIONS AND VECTOR FIELDS ON SIMPLE SURFACES
    Monard, Francois
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (02) : 1155 - 1177
  • [3] The X-ray Transform on a General Family of Curves on Finsler Surfaces
    Assylbekov, Yernat M.
    Dairbekov, Nurlan S.
    JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (02) : 1428 - 1455
  • [4] The X-ray Transform on a General Family of Curves on Finsler Surfaces
    Yernat M. Assylbekov
    Nurlan S. Dairbekov
    The Journal of Geometric Analysis, 2018, 28 : 1428 - 1455
  • [5] THE ATTENUATED RAY TRANSFORM ON SIMPLE SURFACES
    Salo, Mikko
    Uhlmann, Gunther
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2011, 88 (01) : 161 - 187
  • [6] Role of sampling errors in the specification of x-ray mirror surfaces
    Church, EL
    Takacs, PZ
    MULTILAYER AND GRAZING INCIDENCE X-RAY/EUV OPTICS III, 1996, 2805 : 82 - 89
  • [7] X-RAY TRANSFORM
    SOLMON, DC
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1976, 56 (01) : 61 - 83
  • [8] The soft x-ray transform
    Klukowska, Joanna
    Herman, Gabor T.
    Oton, Joaquin
    Marabini, Roberto
    Carazo, Jose-Maria
    INVERSE PROBLEMS, 2014, 30 (12)
  • [9] The X-ray transform for currents
    David, L
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2003, 18 (01) : 113 - 117
  • [10] The spherical X-ray transform
    Cerejeiras, P
    Schaeben, H
    Sommen, F
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2002, 25 (16-18) : 1493 - 1507