The spherical X-ray transform

被引:7
|
作者
Cerejeiras, P [1 ]
Schaeben, H
Sommen, F
机构
[1] Univ Aveiro, Dept Matemat, P-3810 Aveiro, Portugal
[2] Freiberg Univ Min & Technol, D-09596 Freiberg, SA, Germany
[3] Univ Ghent, Dept Math Anal, B-9000 Ghent, Belgium
关键词
D O I
10.1002/mma.384
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The general objective of this communication is to present the basics of mathematical texture analysis as part of integral geometry involving spherical analogues of the X-ray and Radon transform, and in particular to clarify its relationship with mathematical tomography. Copyright (C) 2002 John Wiley Sons, Ltd.
引用
收藏
页码:1493 / 1507
页数:15
相关论文
共 50 条
  • [1] A spherical x-ray transform and hypercube sections
    Kazantsev, Ivan G.
    Schmidt, Soren
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2014, 22 (04): : 537 - 550
  • [2] The spherical X-ray transform of texture goniometry
    Schaeben, H
    Sprössig, W
    van den Boogaart, G
    [J]. CLIFFORD ANALYSIS AND ITS APPLICATIONS, 2001, 25 : 283 - 291
  • [3] X-RAY TRANSFORM
    SOLMON, DC
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1976, 56 (01) : 61 - 83
  • [4] The soft x-ray transform
    Klukowska, Joanna
    Herman, Gabor T.
    Oton, Joaquin
    Marabini, Roberto
    Carazo, Jose-Maria
    [J]. INVERSE PROBLEMS, 2014, 30 (12)
  • [5] The X-ray transform for currents
    David, L
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2003, 18 (01) : 113 - 117
  • [6] X-RAY TRANSFORM, THE LEGENDRE TRANSFORM, AND ENVELOPES
    RAMM, AG
    ZASLAVSKY, AI
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 183 (03) : 528 - 546
  • [7] A discrete spherical x-ray transform of orientation distribution functions using bounding cubes
    Kazantsev, I. G.
    Schmidt, S.
    Poulsen, H. F.
    [J]. INVERSE PROBLEMS, 2009, 25 (10)
  • [8] An estimate for a restricted X-ray transform
    Oberlin, DM
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2000, 43 (04): : 472 - 476
  • [9] X-ray transform on a symmetric space
    Rouvière, F
    [J]. COMPTES RENDUS MATHEMATIQUE, 2006, 342 (01) : 1 - 6
  • [10] A SUPPORT THEOREM FOR THE X-RAY TRANSFORM
    GLOBEVNIK, J
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 165 (01) : 284 - 287