SPECTRAL ASYMPTOTICS FOR MAGNETIC SCHRODINGER OPERATOR WITH SLOWLY VARYING POTENTIAL
被引:0
|
作者:
Dimassi, Mouez
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bordeaux, IMB, UMR 5251, CNRS, 351 Cours Liberat, F-33405 Talence, FranceUniv Bordeaux, IMB, UMR 5251, CNRS, 351 Cours Liberat, F-33405 Talence, France
Dimassi, Mouez
[1
]
Yazbek, Hawraa
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bordeaux, IMB, UMR 5251, CNRS, 351 Cours Liberat, F-33405 Talence, FranceUniv Bordeaux, IMB, UMR 5251, CNRS, 351 Cours Liberat, F-33405 Talence, France
Yazbek, Hawraa
[1
]
Watanabe, Takuya
论文数: 0引用数: 0
h-index: 0
机构:
Ritsumeikan Univ, 1-1-1 Noji Higashi, Kusatsu 5258577, JapanUniv Bordeaux, IMB, UMR 5251, CNRS, 351 Cours Liberat, F-33405 Talence, France
Watanabe, Takuya
[2
]
机构:
[1] Univ Bordeaux, IMB, UMR 5251, CNRS, 351 Cours Liberat, F-33405 Talence, France
[2] Ritsumeikan Univ, 1-1-1 Noji Higashi, Kusatsu 5258577, Japan
Consider the Schrodinger operator with constant magnetic field and smooth potential V : H(epsilon) = H + V(epsilon x, epsilon y), H = D-x(2) + (D-y + mu x)(2), (x, y) is an element of Omega(d), with Dirichlet boundary conditions. Here Omega(d) = Pi(d)(j=1)] - a(j), a(j)[xR(y)(d). The spectral properties of two operators H and H(epsilon) are investigated. For epsilon small enough, we study the effect of the slowly varying potential V(epsilon x, epsilon y). In particular, we derive asymptotic trace formula and we give an asymptotic expansion in powers of epsilon of the spectral shift function corresponding to (H(epsilon), H).
机构:
Univ Bordeaux 1, Inst Math Bordeaux, 351 Cours Liberat, F-33405 Talence, FranceUniv Bordeaux 1, Inst Math Bordeaux, 351 Cours Liberat, F-33405 Talence, France
Dimassi, Mouez
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES,
2016,
59
(04):
: 734
-
747