Fundamentals of the Cathode-Electrolyte Interface in All-solid-state Lithium Batteries

被引:13
|
作者
Jiang, Yidong [1 ]
Lai, Anjie [1 ]
Ma, Jun [1 ]
Yu, Kai [1 ]
Zeng, Huipeng [1 ]
Zhang, Guangzhao [1 ]
Huang, Wei [2 ]
Wang, Chaoyang [3 ]
Chi, Shang-Sen [1 ]
Wang, Jun [1 ]
Deng, Yonghong [1 ]
机构
[1] Southern Univ Sci & Technol, Sch Innovat & Entrepreneurship, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China
[2] Southern Univ Sci & Technol, Natl Ctr Appl Math Shenzhen NCAMS Digital Econ, ISME Dept CoB, Shenzhen 518055, Peoples R China
[3] South China Univ Technol, Res Inst Mat Sci, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
batteries; electrode materials; electrolytes; interface engineering; lithium; ATOMIC LAYER DEPOSITION; IN-SITU VISUALIZATION; SPACE-CHARGE LAYERS; GARNET-TYPE OXIDE; SECONDARY BATTERIES; LI-METAL; ION TRANSPORT; THIN-FILMS; ELECTROCHEMICAL PERFORMANCE; SINTERING TEMPERATURE;
D O I
10.1002/cssc.202202156
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
All-solid-state lithium batteries (ASSBs) enabled by solid-state electrolytes (SEs) including oxide-based and sulfide-based electrolytes have gained worldwide attention because of their intrinsic safety and higher energy density over conventional lithium-ion batteries (LIBs). However, despite the high ionic conductivity of advanced SEs, ASSBs still exhibit high overall internal resistance, the most significant contributor of which can be ascribed to the cathode-SE interfaces. This review seeks to clarify the critical issues regarding the cathode-SE interfaces, including fundamental principles and corresponding solutions. First, major issues concerning electro-chemo-mechanical instability between cathodes and SEs and their formation mechanisms are discussed. Then, specific problems in oxides and sulfides and various solutions and strategies toward interfacial modifications are highlighted. Efforts toward the characterization and analysis of cathode-SE interfaces with advanced techniques are also summarized. Finally, perspectives are offered on several problems demanding urgent solutions and the future development of SE applications and ASSBs.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Charged and Discharged States of Cathode/Sulfide Electrolyte Interfaces in All-Solid-State Lithium Ion Batteries
    Sumita, Masato
    Tanaka, Yoshinori
    Ikeda, Minoru
    Ohno, Takahisa
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (25): : 13332 - 13339
  • [32] Impact of degradation mechanisms at the cathode/electrolyte interface of garnet-based all-solid-state batteries
    Clausnitzer, Moritz
    Ihrig, Martin
    Cressa, Luca
    Hein, Simon
    Finsterbusch, Martin
    Eswara, Santhana
    Kuo, Liang-Yin
    Danner, Timo
    Kaghazchi, Payam
    Fattakhova-Rohlfing, Dina
    Guillon, Olivier
    Latz, Arnulf
    ENERGY STORAGE MATERIALS, 2024, 67
  • [33] Stabilized Cathode/Sulfide Electrolyte Interface through Conformally Interfacial Nanocoating for All-Solid-State Batteries
    Zou, Changfei
    Zang, Zihao
    Tao, Xiyuan
    Yi, Lingguang
    Chen, Xiaoyi
    Zhang, Xiaoyan
    Yang, Li
    Liu, Xianhu
    Wang, Xianyou
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (06) : 3599 - 3607
  • [34] Electrolyte/Electrode Interfaces in All-Solid-State Lithium Batteries: A Review
    Pang, Yuepeng
    Pan, Jinyu
    Yang, Junhe
    Zheng, Shiyou
    Wang, Chunsheng
    ELECTROCHEMICAL ENERGY REVIEWS, 2021, 4 (02) : 169 - 193
  • [35] Electrolyte/Electrode Interfaces in All-Solid-State Lithium Batteries: A Review
    Yuepeng Pang
    Jinyu Pan
    Junhe Yang
    Shiyou Zheng
    Chunsheng Wang
    Electrochemical Energy Reviews, 2021, 4 : 169 - 193
  • [36] NOVEL STRUCTURED ELECTROLYTE FOR ALL-SOLID-STATE LITHIUM ION BATTERIES
    Liu, Wei
    Milcarek, Ryan
    Wang, Kang
    Ahn, Jeongmin
    PROCEEDINGS OF THE ASME 13TH FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY CONFERENCE, 2015, 2016,
  • [37] Oxygen doped argyrodite electrolyte for all-solid-state lithium batteries
    Wu, Ming
    Liu, Gaozhan
    Yao, Xiayin
    APPLIED PHYSICS LETTERS, 2022, 121 (20)
  • [38] Design of a fast ion-transport interlayer on cathode-electrolyte interface for solid-state lithium metal batteries
    Guo, Qingpeng
    Zheng, Jiayi
    Zhu, Yuhao
    Jiang, Haolong
    Jiang, Huize
    Wang, Hui
    Sun, Weiwei
    Sang, Hongqian
    Han, Yu
    Zheng, Chunman
    Xie, Kai
    ENERGY STORAGE MATERIALS, 2022, 48 : 205 - 211
  • [39] Interfacial Degradation Reaction between Cathode and Solid Electrolyte in All-Solid-State Batteries
    Kim, Jae-Hun
    CORROSION SCIENCE AND TECHNOLOGY-KOREA, 2024, 23 (04): : 334 - 342
  • [40] Cathode-electrolyte material interactions during manufacturing of inorganic solid-state lithium batteries
    Sven Uhlenbruck
    Jürgen Dornseiffer
    Sandra Lobe
    Christian Dellen
    Chih-Long Tsai
    Benjamin Gotzen
    Doris Sebold
    Martin Finsterbusch
    Olivier Guillon
    Journal of Electroceramics, 2017, 38 : 197 - 206