A Fault Diagnosis Method of Rotor System Based on Parallel Convolutional Neural Network Architecture with Attention Mechanism

被引:9
|
作者
Zhao, Zhiqian [1 ,2 ]
Jiao, Yinghou [1 ,2 ]
Zhang, Xiang [1 ]
机构
[1] Harbin Inst Technol, Sch Mechatron Engn, Harbin 150000, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, Lab Vibrat & Noise Control, Harbin 150000, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Rotor system; Fault diagnosis; Feature fusion; Convolutional neural network; Attention mechanism; CLASSIFICATION;
D O I
10.1007/s11265-023-01846-y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In practical engineering applications, the working load of the rotor system is changing constantly, and the noise pollution of its working environment is serious, which leads to the performance degradation of traditional fault diagnosis methods. To solve the above problems, we present a novel rotor system fault diagnosis model based on parallel convolutional neural network architecture with attention mechanism (AMPCNN). The model uses convolution kernels of different sizes in parallel channels to process raw data, and based on late feature fusion, a more comprehensive feature map is obtained. Furthermore, the information sharing between the two channels is realized through the attention mechanism so that the effective features of one channel can be reflected in another channel. The performance of the model under variable working conditions is verified by the Machinery Fault Database (MAFAULDA), and the average accuracy is 99.58%. By dividing Gaussian white noise from -9 dB to 2 dB into 11 intervals and adding it to the public data of Wuhan University, the noise resistance performance is verified, and the proposed method can obtain 100% diagnosis accuracy even in the high noise condition. The above experiments show that in terms of load adaptability and noise immunity, the method has higher accuracy than traditional deep learning classification methods.
引用
收藏
页码:965 / 977
页数:13
相关论文
共 50 条
  • [41] A small sample bearing fault diagnosis method based on novel Zernike moment feature attention convolutional neural network
    Zhao, Yunji
    Xu, Jun
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (06)
  • [42] Multiscale Convolutional Neural Network Based on Channel Space Attention for Gearbox Compound Fault Diagnosis
    Xu, Qinghong
    Jiang, Hong
    Zhang, Xiangfeng
    Li, Jun
    Chen, Lan
    SENSORS, 2023, 23 (08)
  • [43] Self-attention convolutional neural network based fault diagnosis algorithm for chemical process
    Ren Jia
    Zou Hongrui
    Tang Lijuan
    Sun Siyu
    Shen Qihao
    Wang Xiang
    Bao Ke
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 4046 - 4051
  • [44] Fault diagnosis of industrial robot based on dual-module attention convolutional neural network
    Lu K.
    Chen C.
    Wang T.
    Cheng L.
    Qin J.
    Autonomous Intelligent Systems, 2022, 2 (01):
  • [45] Bearing Fault Diagnosis Based on Shallow Multi-Scale Convolutional Neural Network with Attention
    Huang, Tengda
    Fu, Sheng
    Feng, Haonan
    Kuang, Jiafeng
    ENERGIES, 2019, 12 (20)
  • [46] A reinforcement neural architecture search convolutional neural network for rolling bearing fault diagnosis
    Li, Lintao
    Jiang, Hongkai
    Wang, Ruixin
    Yang, Qiao
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (11)
  • [47] Bearing fault diagnosis method based on attention mechanism and multilayer fusion network
    Li, Xiaohu
    Wan, Shaoke
    Liu, Shijie
    Zhang, Yanfei
    Hong, Jun
    Wang, Dongfeng
    ISA TRANSACTIONS, 2022, 128 : 550 - 564
  • [48] Intelligent Fault Diagnosis of Reciprocating Compressor Based on Attention Mechanism Assisted Convolutional Neural Network Via Vibration Signal Rearrangement
    Zhao, Dongfang
    Liu, Shulin
    Zhang, Hongli
    Sun, Xin
    Wang, Lu
    Wei, Yuan
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2021, 46 (08) : 7827 - 7840
  • [49] Intelligent Fault Diagnosis of Reciprocating Compressor Based on Attention Mechanism Assisted Convolutional Neural Network Via Vibration Signal Rearrangement
    Dongfang Zhao
    Shulin Liu
    Hongli Zhang
    Xin Sun
    Lu Wang
    Yuan Wei
    Arabian Journal for Science and Engineering, 2021, 46 : 7827 - 7840
  • [50] Fault diagnosis method for building VRF system based on convolutional neural network: Considering system defrosting process and sensor fault coupling
    Zhou, Zhenxin
    Li, Guannan
    Chen, Huanxin
    Zhong, Hanlu
    BUILDING AND ENVIRONMENT, 2021, 195