Cesaro summability of subsequence of the partial sums of Fourier series in operator-valued setting

被引:0
|
作者
Zhao, Tiantian [1 ]
Zhou, Dejian [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Peoples R China
关键词
Noncommutative maximal inequalities; Cesaro means; Fourier series; Almost uniform convergence; THEOREMS;
D O I
10.1007/s11117-023-00975-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f is an element of L-1(L-infinity(T) (circle times) over barM), where T is the classical torus, M is a semi-finite von Neumann algebra. We prove the noncommutative weak type maximal inequality || (gamma(n)(f)) (n)||(Lambda 1,infinity)(N, l(infinity)) <= C ||f || L-1(N), where gamma(n)(f) is the Cesaro means of the subsequence of the partial sums sequence (S-n(f))(n >= 0). As a consequence, the Cesaro means.n( f) converges bilaterally almost uniformly to f whenever n -> infinity.
引用
收藏
页数:13
相关论文
共 50 条