A data-driven framework for evolutionary problems in solid mechanics

被引:4
|
作者
Poelstra, Klaas [1 ]
Bartel, Thorsten [2 ]
Schweizer, Ben [1 ,3 ]
机构
[1] TU Dortmund, Fak Math, Dortmund, Germany
[2] TU Dortmund, Fak Maschinenbau, Dortmund, Germany
[3] TU Dortmund, Fak Math, Vogelspothsweg 87, D-44227 Dortmund, Germany
关键词
Engineering Village;
D O I
10.1002/zamm.202100538
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Data-driven schemes introduced a new perspective in elasticity: While certain physical principles are regarded as invariable, material models for the relation between strain and stress are replaced by data clouds of admissible pairs of these variables. A data-driven approach is of particular interest for plasticity problems, since the material modeling is even more unclear in this field. Unfortunately, so far, data-driven approaches to evolutionary problems are much less understood. We try to contribute in this area and propose an evolutionary data-driven scheme. We present a first analysis of the scheme regarding existence and data convergence. Encouraging numerical tests are also included.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Data-Driven Problems in Elasticity
    S. Conti
    S. Müller
    M. Ortiz
    Archive for Rational Mechanics and Analysis, 2018, 229 : 79 - 123
  • [22] Data-Driven Problems in Elasticity
    Conti, S.
    Mueller, S.
    Ortiz, M.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 229 (01) : 79 - 123
  • [23] A dynamic data-driven application simulation framework for contaminant transport problems
    Douglas, C. C.
    Efendiev, Y.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 51 (11) : 1633 - 1646
  • [24] Non-intrusive data-driven ROM framework for hemodynamics problems
    M. Girfoglio
    L. Scandurra
    F. Ballarin
    G. Infantino
    F. Nicolo
    A. Montalto
    G. Rozza
    R. Scrofani
    M. Comisso
    F. Musumeci
    Acta Mechanica Sinica, 2021, 37 : 1183 - 1191
  • [25] Non-intrusive data-driven ROM framework for hemodynamics problems
    Girfoglio, M.
    Scandurra, L.
    Ballarin, F.
    Infantino, G.
    Nicolo, F.
    Montalto, A.
    Rozza, G.
    Scrofani, R.
    Comisso, M.
    Musumeci, F.
    ACTA MECHANICA SINICA, 2021, 37 (07) : 1183 - 1191
  • [26] Direct data-driven algorithms for multiscale mechanics
    Prume, E.
    Gierden, C.
    Ortiz, M.
    Reese, S.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 433
  • [27] Thermodynamically consistent data-driven computational mechanics
    Gonzalez, David
    Chinesta, Francisco
    Cueto, Elias
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2019, 31 (01) : 239 - 253
  • [28] Data-Driven Computational Simulation in Bone Mechanics
    Sanz-Herrera, J. A.
    Mora-Macias, J.
    Ayensa-Jimenez, J.
    Reina-Romo, E.
    Doweidar, Mohamed H.
    Dominguez, J.
    Doblare, M.
    ANNALS OF BIOMEDICAL ENGINEERING, 2021, 49 (01) : 407 - 419
  • [29] On the data-driven description of lattice materials mechanics
    Ben-Yelun, Ismael
    Irastorza-Valera, Luis
    Saucedo-Mora, Luis
    Montans, Francisco Javier
    Chinesta, Francisco
    RESULTS IN ENGINEERING, 2024, 22
  • [30] Thermodynamically consistent data-driven computational mechanics
    David González
    Francisco Chinesta
    Elías Cueto
    Continuum Mechanics and Thermodynamics, 2019, 31 : 239 - 253