THE CENTERED HAUSDORFF MEASURE OF THE SIERPINSKI GASKET

被引:1
|
作者
Llorente, Marta [1 ]
Mera, Maria Eugenia [2 ]
Moran, Manuel [2 ,3 ]
机构
[1] Univ Autonoma Madrid, Dept Anal Econ Econ Cuantitat, Campus Cantoblanco, Madrid 28049, Spain
[2] Univ Complutense Madrid, Dept Anal Econ & Econ Cuantitat, Campus Somosaguas, Madrid 28223, Spain
[3] Univ Complutense Madrid, Inst Interdisciplinary Math IMI, Plaza Ciencias 3, Madrid 28040, Spain
关键词
Self-similar Sets; Sierpiski Gasket; Hausdorff Measures; Density of Measures; Computability of Fractal Measures; SELF-SIMILAR SETS; PACKING MEASURE; COMPUTABILITY;
D O I
10.1142/S0218348X23501074
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the centered Hausdorff measure, C-s(S), with s = log 3/log 2, of the Sierpinski gasket S, is C-computable (continuous-computable), in the sense that its value is the solution of the minimization problem of a continuous function on a compact domain. We also show that C-s(S) is A-computable (algorithmic-computable) in the sense that there is an algorithm that converges to C-s(S), with explicit error bounds. Using this algorithm we show that C-s(S) similar to 1.0049.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] THE MULTIFRACTAL HAUSDORFF AND PACKING MEASURE OF GENERAL SIERPINSKI CARPETS
    黄立虎
    余旌胡
    ActaMathematicaScientia, 2000, (03) : 313 - 321
  • [32] The multifractal Hausdorff and packing measure of general Sierpinski carpets
    Huang, LH
    Yu, JH
    ACTA MATHEMATICA SCIENTIA, 2000, 20 (03) : 313 - 321
  • [33] A noncommutative Sierpinski gasket
    Cipriani, Fabio E. G.
    Guido, Daniele
    Isola, Tommaso
    Sauvageot, Jean-Luc
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 283 (05)
  • [34] GEODESICS OF THE SIERPINSKI GASKET
    Saltan, Mustafa
    Ozdemir, Yunus
    Demir, Bunyamin
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2018, 26 (03)
  • [35] Sandpiles on a Sierpinski gasket
    Daerden, F
    Vanderzande, C
    PHYSICA A, 1998, 256 (3-4): : 533 - 546
  • [36] Sandpiles on a Sierpinski gasket
    Daerden, Frank
    Vanderzande, Carlo
    Physica A: Statistical Mechanics and its Applications, 1998, 256 (3-4): : 533 - 546
  • [37] Hausdorff Dimension and Measure of a Class of Subsets of the General Sierpinski Carpets
    Yong Xin GUI Department of Mathematics
    ActaMathematicaSinica(EnglishSeries), 2010, 26 (07) : 1369 - 1382
  • [38] Hausdorff dimension and measure of a class of subsets of the general Sierpinski carpets
    Yong Xin Gui
    Acta Mathematica Sinica, English Series, 2010, 26 (7) : 1369 - 1382
  • [39] Slicing the Sierpinski gasket
    Barany, Balazs
    Ferguson, Andrew
    Simon, Karoly
    NONLINEARITY, 2012, 25 (06) : 1753 - 1770
  • [40] Bounds on the Hausdorff measure of level-N Sierpinski gaskets
    Rivera, Andrea Arauza
    Lin, Edwin
    INVOLVE, A JOURNAL OF MATHEMATICS, 2022, 15 (03): : 379 - 391