Microstructural origins of impact resistance of AlCoCrFeNi2.1 eutectic high-entropy alloy

被引:1
|
作者
Li, Jiansheng [1 ]
Zhou, Jian [1 ]
Liu, Yanfang [2 ]
Wei, Kang [3 ]
Liu, Jianfeng [1 ]
Xi, Yichun [1 ]
Li, Zhumin [1 ]
Liu, Tong [1 ]
Jiang, Wei [1 ]
机构
[1] Anhui Polytech Univ, Sch Mat Sci & Engn, Wuhu 241000, Peoples R China
[2] Nanjing Univ Sci & Technol, Nano & Heterogeneous Mat Ctr, Sch Mat Sci & Engn, Nanjing 210094, Peoples R China
[3] Nanchang Hangkong Univ, Jiangxi Key Lab Forming & Joining Technol Aerosp C, Nanchang 330036, Peoples R China
基金
中国国家自然科学基金;
关键词
Dynamic loading; Eutectic high -entropy alloy; Strain hardening; Strain rate hardening; Dislocation slip; STRAIN-RATE SENSITIVITY; MECHANICAL-PROPERTIES; COMPRESSIVE DEFORMATION; PLASTIC INSTABILITY; TEMPERATURE; DISLOCATION; EVOLUTION; DUCTILITY; STRENGTH; BEHAVIOR;
D O I
10.1016/j.msea.2023.145921
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, the mechanical properties and related deformation mechanisms of AlCoCrFeNi2.1 eutectic highentropy alloy (EHEA) under dynamic loading were systematically investigated at a medium strain rate range from 500 to 1500 s-1. The EHEA presents significant strain rate hardening and continuous strain hardening without any adiabatic shear bands. The yield strength increases from 803.8 MPa at 500 s-1 to 1006.8 MPa at 1500 s-1. The strain rate sensitivity and strain hardening exponent were evaluated to be 0.198 and 0.567-0.683, respectively, responding for the superior capability to withstand dynamic loading. Post-deformation microstructural analysis reveals that increased strain rate induces higher dislocation density. In the FCC phase, dislocation planar slip at {111} planes dominates at 500 and 1000 s-1, while high dense dislocation walls (HDDWs) form at 1500 s-1 from coplanar slip along {111} planes. In the BCC phase, high dense nanoprecipitates result in a significant precipitate-strengthening effect, featured by arrow-shaped dislocations, dislocation loops and dislocation tangles.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Solidification Microstructure of AlCoCrFeNi2.1 Eutectic High Entropy Alloy Ingots
    Nagase, Takeshi
    Takemura, Mamoru
    Matsumuro, Mitsuaki
    Maruyama, Toru
    [J]. MATERIALS TRANSACTIONS, 2018, 59 (02) : 255 - 264
  • [32] Phase selection and mechanical properties of directionally solidified AlCoCrFeNi2.1 eutectic high-entropy alloy
    Peng, Peng
    Li, Shengyuan
    Chen, Weiqi
    Xu, Yuanli
    Zhang, Xudong
    Ma, Zhikun
    Wang, Jiatai
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 898
  • [33] Corrosion behavior of AlCoCrFeNi2.1 eutectic high-entropy alloy in Cl-- containing solution
    Song, Longfei
    Hu, Wenbin
    Liao, Bokai
    Wan, Shan
    Kang, Lei
    Guo, Xingpeng
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 938
  • [34] Excellent corrosion resistance of electron beam welded joint and remelted layer of eutectic high-entropy alloy AlCoCrFeNi2.1
    Yang, Jianguo
    Feng, Daochen
    Liu, Yifei
    Zheng, Wenjian
    Lai, Shaobo
    Yan, Dejun
    He, Yanming
    Xie, Jilin
    [J]. INTERMETALLICS, 2023, 154
  • [35] Microstructural evolution mediated creep deformation mechanism for the AlCoCrFeNi2.1 eutectic high-entropy alloy under different testing conditions
    Li, Yafei
    Chen, Weijian
    Lu, Chuanyang
    Li, Huaxin
    Zheng, Wenjian
    Ma, Yinghe
    Jin, Ying
    Jin, Weiya
    Gao, Zengliang
    Yang, Jianguo
    He, Yanming
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 857
  • [36] Characterization of as-cast microstructural heterogeneities and damage mechanisms in eutectic AlCoCrFeNi2.1 high entropy alloy
    Choudhuri, Deep
    Shukla, Shivakant
    Jannott, Philip A.
    Muskeri, Saideep
    Mukherjee, Sundeep
    Lloyd, Jeffrey T.
    Mishra, Rajiv S.
    [J]. MATERIALS CHARACTERIZATION, 2019, 158
  • [37] Effect of lamellar microstructure on fatigue crack initiation and propagation in AlCoCrFeNi2.1 eutectic high-entropy alloy
    Chen, Wei
    Wang, Yuting
    Wang, Luling
    Zhou, Jianqiu
    [J]. ENGINEERING FRACTURE MECHANICS, 2021, 246
  • [38] Dynamic mechanical properties, deformation and damage mechanisms of eutectic high-entropy alloy AlCoCrFeNi2.1 under plate impact
    Zhao, S. P.
    Feng, Z. D.
    Li, L. X.
    Zhao, X. J.
    Lu, L.
    Chen, S.
    Zhang, N. B.
    Cai, Y.
    Luo, S. N.
    [J]. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 134 : 178 - 188
  • [39] Influence of Hydrogen on the Passive Behavior of Eutectic High-Entropy Alloy AlCoCrFeNi2.1 in a Sulfuric Acid Solution
    Song, Longfei
    Dai, Chunduo
    Zhang, Xiaowen
    Liao, Baokai
    [J]. JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2023, 32 (22) : 10299 - 10309
  • [40] Dynamic mechanical properties and microstructure evolution of AlCoCrFeNi2.1 eutectic high-entropy alloy at different temperatures
    Hu, Menglei
    Song, Kaikai
    Song, Weidong
    [J]. Journal of Alloys and Compounds, 2022, 892