Protein design using deep learning

被引:0
|
作者
Baker, David [1 ]
机构
[1] Univ Washington, Seattle, WA USA
关键词
D O I
10.1016/j.jbc.2023.103357
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
2741
引用
收藏
页码:S164 / S164
页数:1
相关论文
共 50 条
  • [21] Improving de novo protein binder design with deep learning
    Bennett, Nathaniel R.
    Coventry, Brian
    Goreshnik, Inna
    Huang, Buwei
    Allen, Aza
    Vafeados, Dionne
    Peng, Ying Po
    Dauparas, Justas
    Baek, Minkyung
    Stewart, Lance
    DiMaio, Frank
    De Munck, Steven
    Savvides, Savvas N.
    Baker, David
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [22] Scoring protein sequence alignments using deep learning
    Shrestha, Bikash
    Adhikari, Badri
    BIOINFORMATICS, 2022, 38 (11) : 2988 - 2995
  • [23] Scaffolding protein functional sites using deep learning
    Wang, Jue
    Lisanza, Sidney
    Juergens, David
    Tischer, Doug
    Watson, Joseph L.
    Castro, Karla M.
    Ragotte, Robert
    Saragovi, Amijai
    Milles, Lukas F.
    Baek, Minkyung
    Anishchenko, Ivan
    Yang, Wei
    Hicks, Derrick R.
    Exposit, Marc
    Schlichthaerle, Thomas
    Chun, Jung-Ho
    Dauparas, Justas
    Bennett, Nathaniel
    Wicky, Basile I. M.
    Muenks, Andrew
    DiMaio, Frank
    Correia, Bruno
    Ovchinnikov, Sergey
    Baker, David
    SCIENCE, 2022, 377 (6604) : 387 - +
  • [24] Imputation of protein activity data using deep learning
    Whitehead, Tom
    Hunt, Peter
    Pellegrini, Ben
    Segall, Matthew
    Conduit, Gareth
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [25] Using Deep Learning to Extrapolate Protein Expression Measurements
    Barzine, Mitra Parissa
    Freivalds, Karlis
    Wright, James C.
    Opmanis, Martins
    Rituma, Darta
    Ghavidel, Fatemeh Zamanzad
    Jarnuczak, Andrew F.
    Celms, Edgars
    Cerans, Karlis
    Jonassen, Inge
    Lace, Lelde
    Antonio Vizcaino, Juan
    Choudhary, Jyoti Sharma
    Brazma, Alvis
    Viksna, Juris
    PROTEOMICS, 2020, 20 (21-22)
  • [26] Framework for design optimization using deep reinforcement learning
    Kazuo Yonekura
    Hitoshi Hattori
    Structural and Multidisciplinary Optimization, 2019, 60 : 1709 - 1713
  • [27] De novo design of luciferases using deep learning
    Yeh, Andy Hsien-Wei
    Norn, Christoffer
    Kipnis, Yakov
    Tischer, Doug
    Pellock, Samuel J.
    Evans, Declan
    Ma, Pengchen
    Lee, Gyu Rie
    Zhang, Jason Z.
    Anishchenko, Ivan
    Coventry, Brian
    Cao, Longxing
    Dauparas, Justas
    Halabiya, Samer
    DeWitt, Michelle
    Carter, Lauren
    Houk, K. N.
    Baker, David
    NATURE, 2023, 614 (7949) : 774 - +
  • [28] Inverse Design of Magnetic Fields Using Deep Learning
    Pollok, Stefan
    Bjork, Rasmus
    Jorgensen, Peter Stanley
    IEEE TRANSACTIONS ON MAGNETICS, 2021, 57 (07)
  • [29] Using deep learning to generate design spaces for architecture
    Sebestyen, Adam
    Hirschberg, Urs
    Rasoulzadeh, Shervin
    INTERNATIONAL JOURNAL OF ARCHITECTURAL COMPUTING, 2023, 21 (02) : 337 - 357
  • [30] De novo design of luciferases using deep learning
    Andy Hsien-Wei Yeh
    Christoffer Norn
    Yakov Kipnis
    Doug Tischer
    Samuel J. Pellock
    Declan Evans
    Pengchen Ma
    Gyu Rie Lee
    Jason Z. Zhang
    Ivan Anishchenko
    Brian Coventry
    Longxing Cao
    Justas Dauparas
    Samer Halabiya
    Michelle DeWitt
    Lauren Carter
    K. N. Houk
    David Baker
    Nature, 2023, 614 : 774 - 780