Data-driven torque and pitch control of wind turbines via reinforcement learning

被引:19
|
作者
Xie, Jingjie [1 ]
Dong, Hongyang [1 ]
Zhao, Xiaowei [1 ]
机构
[1] Univ Warwick, Sch Engn, Intelligent Control & Smart Energy ICSE Res Grp, Coventry CV4 7AL, England
基金
英国工程与自然科学研究理事会;
关键词
Wind turbine control; Reinforcement learning; Deep neural network; Model predictive control; MODEL-PREDICTIVE CONTROL; POWER POINT TRACKING;
D O I
10.1016/j.renene.2023.06.014
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper addresses the torque and pitch control problems of wind turbines. The main contribution of this work is the development of an innovative reinforcement learning (RL)-based control method targeting wind turbine applications. Our RL-based control framework synergistically combines the advantages of deep neural networks (DNNs) and model predictive control (MPC) technologies. The proposed control strategy is data-driven, adapting to real-time changes in system dynamics and enhancing control performance and robustness. Additionally, the incorporation of an MPC structure within our design improves learning efficiency and reduces the high computational complexity typically found in deep RL algorithms. Specifically, a DNN is designed to approximate the wind turbine dynamics based on a continuously updated dataset composed of state and action measurements taken at specified sampling intervals. The real-time control policy is generated by integrating the online trained DNN into an MPC architecture. The proposed method iteratively updates the DNN and control policy in real-time to optimize performance. As a primary result of this work, the proposed method demonstrates superior robustness and control performance compared to commonly-employed MPC and other baseline wind turbine controllers in the presence of uncertainties and unexpected actuator faults. This effectiveness is showcased through simulations with a high-fidelity wind turbine simulator.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Reinforcement Learning based Data-driven Optimal Control Strategy for Systems with Disturbance
    Fan, Zhong-Xin
    Li, Shihua
    Liu, Rongjie
    2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS, 2023, : 567 - 572
  • [42] Data-driven wind turbine wake modeling via probabilistic machine learning
    Renganathan, S. Ashwin
    Maulik, Romit
    Letizia, Stefano
    Iungo, Giacomo Valerio
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (08): : 6171 - 6186
  • [43] Data-Driven Distributed H∞ Current Sharing Consensus Optimal Control of DC Microgrids via Reinforcement Learning
    Dong, Xu
    Zhang, Huaguang
    Xie, Xiangpeng
    Ming, Zhongyang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2024, 71 (06) : 2824 - 2834
  • [44] Data-driven wind turbine wake modeling via probabilistic machine learning
    S. Ashwin Renganathan
    Romit Maulik
    Stefano Letizia
    Giacomo Valerio Iungo
    Neural Computing and Applications, 2022, 34 : 6171 - 6186
  • [45] A Data-Driven Approach for Components Useful Life Estimation in Wind Turbines
    Zornoza Martinez, Alejandro
    Martinez-Gomez, Jesus
    Gamez, Jose A.
    16TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING MODELS IN INDUSTRIAL AND ENVIRONMENTAL APPLICATIONS (SOCO 2021), 2022, 1401 : 37 - 47
  • [46] Data-driven multivariate power curve modeling of offshore wind turbines
    Janssens, Olivier
    Noppe, Nymfa
    Devriendt, Christof
    Van de Walle, Rik
    Van Hoecke, Sofie
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2016, 55 : 331 - 338
  • [47] Fuzzy-based collective pitch control for wind turbine via deep reinforcement learning
    Nabeel, Abdelhamid
    Lasheen, Ahmed
    Elshafei, Abdel Latif
    Zahab, Essam Aboul
    ISA TRANSACTIONS, 2024, 148 : 307 - 325
  • [48] Data-driven design of robust fault detection system for wind turbines
    Yin, Shen
    Wang, Guang
    Karimi, Hamid Reza
    MECHATRONICS, 2014, 24 (04) : 298 - 306
  • [49] Fault Detection and Diagnosis for Wind Turbines using Data-Driven Approach
    Francisco Manrique, Ruben
    Andres Giraldo, Fabian
    Sofrony Esmeral, Jorge
    2012 7TH COLOMBIAN COMPUTING CONGRESS (CCC), 2012,
  • [50] A radically data-driven method for fault detection and diagnosis in wind turbines
    Yu, D.
    Chen, Z. M.
    Xiahou, K. S.
    Li, M. S.
    Ji, T. Y.
    Wu, Q. H.
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2018, 99 : 577 - 584