Data-driven torque and pitch control of wind turbines via reinforcement learning
被引:19
|
作者:
Xie, Jingjie
论文数: 0引用数: 0
h-index: 0
机构:
Univ Warwick, Sch Engn, Intelligent Control & Smart Energy ICSE Res Grp, Coventry CV4 7AL, EnglandUniv Warwick, Sch Engn, Intelligent Control & Smart Energy ICSE Res Grp, Coventry CV4 7AL, England
Xie, Jingjie
[1
]
Dong, Hongyang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Warwick, Sch Engn, Intelligent Control & Smart Energy ICSE Res Grp, Coventry CV4 7AL, EnglandUniv Warwick, Sch Engn, Intelligent Control & Smart Energy ICSE Res Grp, Coventry CV4 7AL, England
Dong, Hongyang
[1
]
论文数: 引用数:
h-index:
机构:
Zhao, Xiaowei
[1
]
机构:
[1] Univ Warwick, Sch Engn, Intelligent Control & Smart Energy ICSE Res Grp, Coventry CV4 7AL, England
Wind turbine control;
Reinforcement learning;
Deep neural network;
Model predictive control;
MODEL-PREDICTIVE CONTROL;
POWER POINT TRACKING;
D O I:
10.1016/j.renene.2023.06.014
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
This paper addresses the torque and pitch control problems of wind turbines. The main contribution of this work is the development of an innovative reinforcement learning (RL)-based control method targeting wind turbine applications. Our RL-based control framework synergistically combines the advantages of deep neural networks (DNNs) and model predictive control (MPC) technologies. The proposed control strategy is data-driven, adapting to real-time changes in system dynamics and enhancing control performance and robustness. Additionally, the incorporation of an MPC structure within our design improves learning efficiency and reduces the high computational complexity typically found in deep RL algorithms. Specifically, a DNN is designed to approximate the wind turbine dynamics based on a continuously updated dataset composed of state and action measurements taken at specified sampling intervals. The real-time control policy is generated by integrating the online trained DNN into an MPC architecture. The proposed method iteratively updates the DNN and control policy in real-time to optimize performance. As a primary result of this work, the proposed method demonstrates superior robustness and control performance compared to commonly-employed MPC and other baseline wind turbine controllers in the presence of uncertainties and unexpected actuator faults. This effectiveness is showcased through simulations with a high-fidelity wind turbine simulator.
机构:
Univ Warwick, Sch Engn, Intelligent Control & Smart Energy ICSE Res Grp, Coventry CV4 7AL, EnglandUniv Warwick, Sch Engn, Intelligent Control & Smart Energy ICSE Res Grp, Coventry CV4 7AL, England
机构:
Univ Iowa, Intelligent Syst Lab, Dept Mech & Ind Engn, Iowa City, IA 52242 USAUniv Iowa, Intelligent Syst Lab, Dept Mech & Ind Engn, Iowa City, IA 52242 USA
Kusiak, Andrew
Song, Zhe
论文数: 0引用数: 0
h-index: 0
机构:
Univ Iowa, Intelligent Syst Lab, Dept Mech & Ind Engn, Iowa City, IA 52242 USAUniv Iowa, Intelligent Syst Lab, Dept Mech & Ind Engn, Iowa City, IA 52242 USA
Song, Zhe
Zheng, Haiyang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Iowa, Intelligent Syst Lab, Dept Mech & Ind Engn, Iowa City, IA 52242 USAUniv Iowa, Intelligent Syst Lab, Dept Mech & Ind Engn, Iowa City, IA 52242 USA
机构:
Univ Politcn Catalunya BarcelonaTech UPC, EUETIB, Dept Appl Math 3, Control Dynam & Applicat CoDAlab, Barcelona 08036, SpainUniv Politcn Catalunya BarcelonaTech UPC, EUETIB, Dept Appl Math 3, Control Dynam & Applicat CoDAlab, Barcelona 08036, Spain
Pozo, Francesc
Vidal, Yolanda
论文数: 0引用数: 0
h-index: 0
机构:
Univ Politcn Catalunya BarcelonaTech UPC, EUETIB, Dept Appl Math 3, Control Dynam & Applicat CoDAlab, Barcelona 08036, SpainUniv Politcn Catalunya BarcelonaTech UPC, EUETIB, Dept Appl Math 3, Control Dynam & Applicat CoDAlab, Barcelona 08036, Spain
Vidal, Yolanda
Acho, Leonardo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Politcn Catalunya BarcelonaTech UPC, EUETIB, Dept Appl Math 3, Control Dynam & Applicat CoDAlab, Barcelona 08036, SpainUniv Politcn Catalunya BarcelonaTech UPC, EUETIB, Dept Appl Math 3, Control Dynam & Applicat CoDAlab, Barcelona 08036, Spain
Acho, Leonardo
Luo, Ningsu
论文数: 0引用数: 0
h-index: 0
机构:Univ Politcn Catalunya BarcelonaTech UPC, EUETIB, Dept Appl Math 3, Control Dynam & Applicat CoDAlab, Barcelona 08036, Spain
Luo, Ningsu
Zapateiro, Mauricio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Politcn Catalunya BarcelonaTech UPC, EUETIB, Dept Appl Math 3, Control Dynam & Applicat CoDAlab, Barcelona 08036, SpainUniv Politcn Catalunya BarcelonaTech UPC, EUETIB, Dept Appl Math 3, Control Dynam & Applicat CoDAlab, Barcelona 08036, Spain
Zapateiro, Mauricio
[J].
2013 AMERICAN CONTROL CONFERENCE (ACC),
2013,
: 6486
-
6491