Waveform impact on thermo-mechanical fatigue crack growth of a non-crystallizing rubber: Experimental observation and numerical simulation

被引:7
|
作者
Liu, Chen [1 ,2 ]
Gu, Bochao [2 ]
Wang, Feng [3 ]
Lu, Bo [3 ]
Liu, Fengzhu [3 ]
Liu, Jun [1 ]
Lu, Yonglai [1 ,2 ]
Zhang, Liqun [1 ,2 ]
Li, Fanzhu [1 ,2 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
[2] Beijing Univ Chem Technol, Key Lab Beijing City Preparat & Proc Novel Polymer, Beijing 100029, Peoples R China
[3] Shandong Linglong Tyre Co LTD, Yantai 265406, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Rubber; Thermo-mechanical; Fatigue crack growth; Pulse waveform; Finite element analysis; NATURAL-RUBBER; HEAT BUILDUP; TEMPERATURE; BEHAVIOR; PROPAGATION; MECHANISM; LIFE; TIP;
D O I
10.1016/j.compositesb.2023.110604
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Compared with the sine waveform, the pulse waveform load is more in line with the real service condition of tire. It was investigated the effect of two pulse waveform loads on the thermo-mechanical fatigue crack growth rate (FCGR) of filled styrene-butadiene rubber and explained the underlying mechanism. The fatigue test and infrared thermal imaging test revealed that the shorter the pulse excitation time, the higher the heat build-up and the faster the FCGR. The underlying mechanism was explained by an established thermo-mechanical coupling method, and it was pointed out that the faster FCGR under high-frequency loading condition resulted from higher hysteresis energy rather than higher strain energy. The Parallel Rheological Framework model could not explain this phenomenon well.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Effect of mechanical loading history on fatigue crack growth of non-crystallizing rubber
    Schieppati, Jacopo
    Schrittesser, Bernd
    Wondracek, Alfred
    Robin, Stefan
    Holzner, Armin
    Pinter, Gerald
    ENGINEERING FRACTURE MECHANICS, 2021, 257
  • [2] Temperature impact on the mechanical and fatigue behavior of a non-crystallizing rubber
    Schieppati, Jacopo
    Schrittesser, Bernd
    Wondracek, Alfred
    Robin, Stefan
    Holzner, Armin
    Pinter, Gerald
    INTERNATIONAL JOURNAL OF FATIGUE, 2021, 144
  • [3] Experimental characterization and numerical assessment of fatigue crack growth under thermo-mechanical conditions
    Schlitzer, T.
    Bauerbach, K.
    Beier, H. T.
    Fischaleck, M.
    Langschwager, K.
    Oechsner, M.
    Rudolph, J.
    Scholz, A.
    Vormwald, M.
    Willuweit, A.
    MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2015, 46 (02) : 165 - 177
  • [4] Thermo-mechanical coupling analysis of edge-cracked rubber specimen focusing on the crack tip: Experimental observation and numerical simulation
    Liu, Chen
    Gu, Bochao
    Chen, Jianfeng
    Zhang, Liqun
    Lu, Yonglai
    Li, Fanzhu
    MATERIALS TODAY COMMUNICATIONS, 2022, 31
  • [5] THERMO-MECHANICAL FATIGUE CRACK GROWTH TESTING
    Borg, Jennifer
    Platts, Norman
    Gill, Peter
    Mann, Jonathan
    Currie, Chris
    PROCEEDINGS OF THE ASME 2020 PRESSURE VESSELS & PIPING CONFERENCE (PVP2020), VOL 1, 2020,
  • [6] Experimental simulation of complex thermo-mechanical fatigue
    Bardenheier, R.
    Rogers, G.
    Experimental Mechanics in Nano and Biotechnology, Pts 1 and 2, 2006, 326-328 : 1019 - 1022
  • [7] Short fatigue crack growth sensitivity to thermo-mechanical fatigue loading
    Leost, Nicolas
    Missoum-Benziane, Djamel
    Rambaudon, Matthieu
    Cameriano, Laurent
    Comte, Francois
    Le Pannerer, Brice
    Maurel, Vincent
    INTERNATIONAL JOURNAL OF FATIGUE, 2025, 191
  • [8] Thermo-Mechanical Fatigue Crack Growth of RR1000
    Pretty, Christopher John
    Whitaker, Mark Thomas
    Williams, Steve John
    MATERIALS, 2017, 10 (01):
  • [9] Numerical simulation of the crack shape for the thermo-mechanical loaded valve
    Wu, Hao
    Zhong, Zheng
    Benseddiq, Noureddine
    Imad, Abdellatif
    ENGINEERING FAILURE ANALYSIS, 2011, 18 (06) : 1487 - 1495
  • [10] Development of fatigue crack growth testing under thermo-mechanical fatigue conditions
    Jacques, S.
    Lynch, M.
    Wisbey, A.
    Stekovic, S.
    Williams, S.
    MATERIALS AT HIGH TEMPERATURES, 2013, 30 (01) : 49 - 61