Efficient and Lightweight Convolutional Networks for IoT Malware Detection: A Federated Learning Approach

被引:6
|
作者
Abdel-Basset, Mohamed [1 ]
Hawash, Hossam [1 ]
Sallam, Karam M. [2 ]
Elgendi, Ibrahim [2 ]
Munasinghe, Kumudu [2 ]
Jamalipour, Abbas [3 ]
机构
[1] Zagazig Univ, Fac Comp & Informat, Zagazig 44519, Egypt
[2] Univ Canberra, Sch IT & Syst, Canberra, ACT 2601, Australia
[3] Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW 2006, Australia
关键词
Internet of Things; Malware; Security; Image edge detection; Feature extraction; Training; Detectors; Adversarial attacks; deep learning (DL); edge; fog computing; federated learning (FL); malware detection; INTERNET;
D O I
10.1109/JIOT.2022.3229005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Over the past few years, billions of unsecured Internet of Things (IoT) devices have been produced and released, and that number will only grow as wireless technology advances. As a result of their susceptibility to malware, effective methods have become necessary for identifying IoT malware. However, the low generalizability and the nonindependently and identically distributed data (non-IID) still pose a major challenge to achieving this goal. In this work, a new federated malware detection paradigm, termed FED-MAL, is introduced to collaboratively train multiple distributed edge devices to detect malware. In FED-MAL, the malware binaries are transformed into an image format to lessen the impact on non-IID, and then a compact convolutional model, named AM-NET, is proposed to learn the malware patterns as an image recognition task. The compact nature of AM-NET makes it an appropriate choice for deployment on resource-constrained IoT devices. Following, a refined edge-based adversarial training is given in FED-MAL to empower generalizability and resistibility by generating adversarial samples from various participating clients. Experimental evaluation on publicly available malware data sets shows that the FED-MAL is efficacious, reliable, expandable, generalizable, and communication efficient.
引用
下载
收藏
页码:7164 / 7173
页数:10
相关论文
共 50 条
  • [41] Improving Privacy in Federated Learning-Based Intrusion Detection for IoT Networks
    Syne, Lamine
    Caballero-Gil, Pino
    Hernandez-Goya, Candelaria
    39TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2024, 2024, : 580 - 582
  • [42] Digital Twin and federated learning enabled cyberthreat detection system for IoT networks
    Salim, Mikail Mohammed
    Camacho, David
    Park, Jong Hyuk
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 161 : 701 - 713
  • [43] Federated Deep Learning-based Intrusion Detection Approach for Enhancing Privacy in Fog-IoT Networks
    Radjaa, Bensaid
    Nabila, Labraoui
    Salameh, Haythem Bany
    2023 10TH INTERNATIONAL CONFERENCE ON INTERNET OF THINGS: SYSTEMS, MANAGEMENT AND SECURITY, IOTSMS, 2023, : 156 - 160
  • [44] Anomaly Detection using Distributed Log Data: A Lightweight Federated Learning Approach
    Guo, Yalan
    Wu, Yulei
    Zhu, Yanchao
    Yang, Bingqiang
    Han, Chunjing
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [45] An Efficient Deep Learning Approach To IoT Intrusion Detection
    Cao, Jin
    Lin, Liwei
    Ma, Ruhui
    Guan, Haibing
    Tian, Mengke
    Wang, Yong
    COMPUTER JOURNAL, 2022, 65 (11): : 2870 - 2879
  • [46] Securing Android IoT devices with GuardDroid transparent and lightweight malware detection
    Wajahat, Ahsan
    He, Jingsha
    Zhu, Nafei
    Mahmood, Tariq
    Nazir, Ahsan
    Ullah, Faheem
    Qureshi, Sirajuddin
    Dev, Soumyabrata
    AIN SHAMS ENGINEERING JOURNAL, 2024, 15 (05)
  • [47] Async-HFL: Efficient and Robust Asynchronous Federated Learning in Hierarchical IoT Networks
    Yu, Xiaofan
    Cherkasova, Ludmila
    Vardhan, Harsh
    Zhao, Quanling
    Ekaireb, Emily
    Zhang, Xiyuan
    Mazumdar, Arya
    Rosing, Tajana Simunic
    PROCEEDINGS 8TH ACM/IEEE CONFERENCE ON INTERNET OF THINGS DESIGN AND IMPLEMENTATION, IOTDI 2023, 2023, : 236 - 248
  • [48] Blockchain-enabled Efficient and Secure Federated Learning in IoT and Edge Computing Networks
    Al Mallah, Ranwa
    Lopez, David
    Halabi, Talal
    2023 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS, ICNC, 2023, : 511 - 515
  • [49] Communication-Efficient Federated Learning for Digital Twin Edge Networks in Industrial IoT
    Lu, Yunlong
    Huang, Xiaohong
    Zhang, Ke
    Maharjan, Sabita
    Zhang, Yan
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (08) : 5709 - 5718
  • [50] An energy-efficient decentralized federated learning framework for mobile-IoT networks
    Taheri Javan, Nastooh
    Zakizadeh Gharyeali, Elahe
    Mostafavi, Seyedakbar
    Computer Networks, 2025, 263