A Short-Term Forecasting of Wind Power Outputs Based on Gradient Boosting Regression Tree Algorithms

被引:16
|
作者
Park, Soyoung [1 ]
Jung, Solyoung [2 ]
Lee, Jaegul [2 ]
Hur, Jin [1 ]
机构
[1] Ewha Womans Univ, Dept Climate & Energy Syst Engn, Seoul 03760, South Korea
[2] Korea Elect Power Corp Res Inst, Daejeon 34056, South Korea
基金
新加坡国家研究基金会;
关键词
renewable energy; wind-power forecasting; machine learning; gradient-boosting machine (GBM);
D O I
10.3390/en16031132
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With growing interest in sustainability and net-zero emissions, there has been a global trend to integrate wind power into energy grids. However, challenges such as the intermittency of wind energy remain, which leads to a significant need for accurate wind-power forecasting. Therefore, this study focuses on creating a wind-power generation-forecasting model using a machine-learning algorithm. In this study, we used the gradient-boosting machine (GBM) algorithm to build a wind-power forecasting model. Time-series data with a 15 min interval from Jeju's wind farms were applied to the model as input data. The short-term forecasting model trained by the same month with the test set turns out to have the best performance, with an NMAE value of 5.15%. Furthermore, the forecasting results were applied to Jeju's power system to carry out a grid-security analysis. The improved accuracy of wind-power forecasting and its impact on the security of electrical grids in this study potentially contributes to greater integration of wind energy.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Short-Term Wind Power Forecasting Based on Support Vector Machine
    Wang, Jidong
    Sun, Jiawen
    Zhang, Huiying
    2013 5TH INTERNATIONAL CONFERENCE ON POWER ELECTRONICS SYSTEMS AND APPLICATIONS (PESA), 2013,
  • [32] Short-term wind power forecasting based on cloud SVM model
    School of Electrical Engineering, Guangxi University, Nanning 530004, China
    Dianli Zidonghua Shebei Electr. Power Autom. Equip., 7 (34-38):
  • [33] Short-Term Wind Power Forecasting Based on SVM with Backstepping Wind Speed of Power Curve
    Yang, Xiyun
    Wei, Peng
    Liu, Huan
    Sun, Baojun
    INDUSTRIAL DESIGN AND MECHANICAL POWER, 2012, 224 : 401 - +
  • [34] Short-Term Wind Speed Forecasting of Knock Airport Based on ANN Algorithms
    Yadav, Mukh Raj
    Singh, Kumar Gaurav
    Chaturvedi, Anurag
    2017 IEEE INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATION, INSTRUMENTATION AND CONTROL (ICICIC), 2017,
  • [35] Development of Short-Term Wind Power Forecasting Methods
    Cao, Bo
    Chang, Liuchen
    2022 IEEE 7TH SOUTHERN POWER ELECTRONICS CONFERENCE, SPEC, 2022,
  • [36] Short-Term Forecasting and Uncertainty Analysis of Wind Power
    Bo, Gu
    Keke, Luo
    Hongtao, Zhang
    Jinhua, Zhang
    Hui, Huang
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2021, 143 (05):
  • [37] Simulation of Wind-Battery Microgrid Based on Short-Term Wind Power Forecasting
    Genikomsakis, Konstantinos N.
    Lopez, Sergio
    Dallas, Panagiotis I.
    Ioakimidis, Christos S.
    APPLIED SCIENCES-BASEL, 2017, 7 (11):
  • [38] Short-term Forecasting and Error Correction of Wind Power Based on Power Fluctuation Process
    Ding M.
    Zhang C.
    Wang B.
    Bi R.
    Miao L.
    Che J.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2019, 43 (03): : 2 - 9
  • [39] Decomposition-Based Short-Term Wind Power Forecasting for Isolated Power Systems
    Aitken, William
    Negnevitsky, Michael
    Semshchikov, Evgenii
    2020 AUSTRALASIAN UNIVERSITIES POWER ENGINEERING CONFERENCE (AUPEC), 2020,
  • [40] Short-Term Solar Power Forecasting Based on Weighted Gaussian Process Regression
    Sheng, Hanmin
    Xiao, Jian
    Cheng, Yuhua
    Ni, Qiang
    Wang, Song
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (01) : 300 - 308