A knowledge dynamic matching unit-guided multi-source domain adaptation network with attention mechanism for rolling bearing fault diagnosis

被引:46
|
作者
Wu, Zhenghong [1 ]
Jiang, Hongkai [1 ]
Zhu, Hongxuan [1 ]
Wang, Xin [1 ]
机构
[1] Northwestern Polytech Univ, Sch Civil Aviat, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi -source domain adaptation; Knowledge dynamic matching unit; Attention mechanism; Bearing fault diagnosis; ALGORITHM;
D O I
10.1016/j.ymssp.2023.110098
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Most current research on multi-source domain adaptation in bearing fault diagnosis focuses on training domain-agnostic networks whose parameters are static. However, it is challenging for static networks to address conflicts across multiple domains when there are domain discrepancies not only between source and target domains, but also between different source domains. Thus, this paper develops a knowledge dynamic matching unit-guided multi-source domain adaptation network with attention mechanism (KDMUMDAN) for bearing fault diagnosis, whose model parameters can dynamically adapt to input samples. KDMUMDAN consists of two modules: a feature extractor with the knowledge dynamic matching unit (KDMU) and two classifiers with attention mechanism. The feature extractor with KDMU is capable of dynamically adjusting the model parameters according to the distribution of input samples to obtain better feature representations, which can effectively facilitate the alignment of source and target domain distributions since it only needs to align the target domain with any part of the set of multi-source domains. Moreover, an attention mechanism is embedded into two classifiers to boost the impact of the more relevant source domain, which can leverage fully the knowledge in multi-source domains to promote data distribution alignment. Experimental results verify that KDMUMDAN has superior bearing fault diagnosis ability across multiple domains.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Intelligent fault diagnosis scheme for rolling bearing based on domain adaptation in one dimensional feature matching
    Sun, Dengyun
    Meng, Zong
    Guan, Yang
    Liu, Jingbo
    Cao, Wei
    Fan, Fengjie
    APPLIED SOFT COMPUTING, 2023, 146
  • [42] Dual-weight attention-based multi-source multi-stage alignment domain adaptation for industrial fault diagnosis
    Wang, Qi
    Chen, Qitong
    Chen, Liang
    Shen, Changqing
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (09)
  • [43] A fault diagnosis method of rolling bearings based on multi-source domain heterogeneous model transfer
    Wang Y.
    Xia L.
    Kang S.
    Xie J.
    Wang Q.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2023, 42 (24): : 257 - 266
  • [44] Multisource cross-domain fault diagnosis of rolling bearing based on subdomain adaptation network
    Wang, Zhichao
    Huang, Wentao
    Chen, Yi
    Jiang, Yunchuan
    Peng, Gaoliang
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (10)
  • [45] A Multi-Scale Attention Mechanism Based Domain Adversarial Neural Network Strategy for Bearing Fault Diagnosis
    Zhang, Quanling
    Tang, Ningze
    Fu, Xing
    Peng, Hao
    Bo, Cuimei
    Wang, Cunsong
    ACTUATORS, 2023, 12 (05)
  • [46] A fine-grained feature decoupling based multi-source domain adaptation network for rotating machinery fault diagnosis
    Zheng, Xiaorong
    Nie, Jiahao
    He, Zhiwei
    Li, Ping
    Dong, Zhekang
    Gao, Mingyu
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 243
  • [47] Moment matching-based intraclass multisource domain adaptation network for bearing fault diagnosis
    Xia, Yu
    Shen, Changqing
    Wang, Dong
    Shen, Yongjun
    Huang, Weiguo
    Zhu, Zhongkui
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 168
  • [48] A rolling bearing fault diagnosis method based on a convolutional neural network with frequency attention mechanism
    Zhou, Hui
    Liu, Runda
    Li, Yaxin
    Wang, Jiacheng
    Xie, Suchao
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2024, 23 (04): : 2475 - 2495
  • [49] Dynamic Distribution Adaptation Based Transfer Network for Cross Domain Bearing Fault Diagnosis
    Yixiao Liao
    Ruyi Huang
    Jipu Li
    Zhuyun Chen
    Weihua Li
    Chinese Journal of Mechanical Engineering, 2021, 34 (03) : 107 - 116
  • [50] Dynamic Distribution Adaptation Based Transfer Network for Cross Domain Bearing Fault Diagnosis
    Yixiao Liao
    Ruyi Huang
    Jipu Li
    Zhuyun Chen
    Weihua Li
    Chinese Journal of Mechanical Engineering, 2021, 34