Development of an Interpretable Machine Learning Model for Predicting Individual Response to Antihypertensive Treatments

被引:0
|
作者
Yi, Jiayi
Wang, Lili
Liu, Yanchen
Liu, Jiamin
Zhang, Haibo
Zheng, Xin
机构
关键词
Hypertension; Machine Learning; Prediction model; Blood pressure determination;
D O I
10.1161/circ.148.suppl_1.15033
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
A15033
引用
收藏
页数:2
相关论文
共 50 条
  • [41] Development of a machine learning model for predicting abnormalities of commercial airplanes
    Passarella, Rossi
    Nurmaini, Siti
    Rachmatullah, Muhammad Naufal
    Veny, Harumi
    Nur Hafidzoh, Fara Nissya
    Data Science and Management, 2024, 7 (03): : 256 - 265
  • [42] Development of Machine Learning Model for Predicting Distillation Column Temperature
    Kwon, Hyukwon
    Oh, Kwang Cheol
    Chung, Yongchul G.
    Cho, Hyungtae
    Kim, Junghwan
    APPLIED CHEMISTRY FOR ENGINEERING, 2020, 31 (05): : 520 - 525
  • [43] Identifying microRNAs associated with tumor immunotherapy response using an interpretable machine learning model
    Dong-Yeon Nam
    Je-Keun Rhee
    Scientific Reports, 14
  • [44] Interpretable machine learning for predicting chronic kidney disease progression risk
    Zheng, Jin-Xin
    Li, Xin
    Zhu, Jiang
    Guan, Shi-Yang
    Zhang, Shun-Xian
    Wang, Wei-Ming
    DIGITAL HEALTH, 2024, 10
  • [45] Interpretable Machine Learning Approach to Predicting Electric Vehicle Buying Decisions
    Naseri, Hamed
    Waygood, E. O. D.
    Wang, Bobin
    Patterson, Zachary
    TRANSPORTATION RESEARCH RECORD, 2023, 2677 (12) : 704 - 717
  • [46] An Interpretable Machine Learning Approach for Predicting Hospital Length of Stay and Readmission
    Liu, Yuxi
    Qin, Shaowen
    ADVANCED DATA MINING AND APPLICATIONS, ADMA 2021, PT I, 2022, 13087 : 73 - 85
  • [47] Interpretable machine learning for predicting sepsis risk in emergency triage patients
    Liu, Zheng
    Shu, Wenqi
    Li, Teng
    Zhang, Xuan
    Chong, Wei
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [48] StratoMod: predicting sequencing and variant calling errors with interpretable machine learning
    Dwarshuis, Nathan
    Tonner, Peter
    Olson, Nathan D.
    Sedlazeck, Fritz J.
    Wagner, Justin
    Zook, Justin M.
    COMMUNICATIONS BIOLOGY, 2024, 7 (01)
  • [49] Predicting stroke severity of patients using interpretable machine learning algorithms
    Sorayaie Azar, Amir
    Samimi, Tahereh
    Tavassoli, Ghanbar
    Naemi, Amin
    Rahimi, Bahlol
    Hadianfard, Zahra
    Wiil, Uffe Kock
    Nazarbaghi, Surena
    Bagherzadeh Mohasefi, Jamshid
    Lotfnezhad Afshar, Hadi
    EUROPEAN JOURNAL OF MEDICAL RESEARCH, 2024, 29 (01)
  • [50] Predicting Hospital No-Shows: Interpretable Machine Learning Models Approach
    Toffaha, Khaled M.
    Simsekler, Mecit Can Emre
    Alshehhi, Aamna
    Omar, Mohammed Atif
    IEEE ACCESS, 2024, 12 : 166058 - 166067