Performance Analysis of Self-Compacting Concrete with Use of Artificial Aggregate and Partial Replacement of Cement by Fly Ash

被引:3
|
作者
Patil, Abhay [1 ]
Jayale, Vivek [1 ]
Arunachalam, Krishna Prakash [2 ]
Ansari, Khalid [1 ]
Avudaiappan, Siva [3 ]
Agrawal, Dhiraj [1 ]
Kuthe, Abhaykumar M. [4 ]
Alharbi, Yousef R. [5 ]
Amir Khan, Mohammad [6 ]
Roco-Videla, Angel [7 ]
机构
[1] Yeshwantrao Chavan Coll Engn, Dept Civil Engn, Nagpur 441110, India
[2] Anna Univ, Dept Civil Engn, Univ Coll Engn Nagercoil, Nagercoil 629004, India
[3] Univ Tecnol Metropolitana, Fac Ciencias Construcc & Ordenamiento Terr, Dept Ciencias Construcc, Santiago 8330383, Chile
[4] Visvesvaraya Natl Inst Technol, Dept Mech Engn, Nagpur 440010, India
[5] King Saud Univ, Coll Engn, Dept Civil Engn, Riyadh 11421, Saudi Arabia
[6] Galgotias Coll Engn & Technol, Dept Civil Engn, Knowledge Pk 1, Greater Noida 201310, India
[7] Univ Amer, Fac Salud & Ciencias Sociales, Providencias 7500975, Santiago, Chile
关键词
self-compacting concrete; viscosity modifying agent; artificial aggregate; superplasticizer; fly ash; RICE HUSK; COMPRESSIVE STRENGTH; MECHANICAL PERFORMANCE; FRESH; PERMEABILITY; FIBERS; SCC;
D O I
10.3390/buildings14010143
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Artificial aggregate (AF), i.e., silico manganese (SiMn) slag aggregate, is a byproduct of ferromanganese and silico manganese alloy production. The utilization of industrial waste and industrial byproducts in construction has increased the aim of conserving natural resources to nurture a pollution-free environment. The current study examines the performance of the use of artificial aggregate (AF) and partial replacement of cement with fly ash (FA). The properties of fresh concrete, as well as the compressive and flexural strength and split tensile strength of concrete were evaluated. Seven mix proportions were prepared for M30-grade concrete. The first was a control mix (with 0% AF and FA), three other mixes contained varying amounts of AF (20%, 40%, and 60%) as a partial replacement of CA with AF. The average compressive strength of the control SCC was found to be 32.87 MPa (megapascals) at the age of 28 days, and after replacing 20% natural aggregate with artificial aggregate, the compressive strength increased by 8.27%, whereas for 40% and 60% replacement, it decreased by 4.46% and 12.55%, respectively. Further investigation was performed on the optimum value obtained by replacing 20% of CA with AF. At this percentage, cement was replaced by FA at (15%, 25%, and 35%) where at 15%, the average compressive strength increased by 7.41%, whereas for 25% and 35% replacement, it decreased by 7.47% and 17.19%, respectively. For SCAF20 and SCF15, all strengths were at maximum due to the increase in its density. The findings show that the development of advanced construction materials is environmentally sustainable.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Recycled glass replacement as fine aggregate in self-compacting concrete
    Sharifi Y.
    Houshiar M.
    Aghebati B.
    Frontiers of Structural and Civil Engineering, 2013, 7 (4) : 419 - 428
  • [32] Development of sustainable self-compacting concrete using recycled concrete aggregate and fly ash, slag, silica fume
    Guo, Zhanggen
    Zhang, Jing
    Jiang, Tao
    Jiang, Tianxun
    Chen, Chen
    Bo, Rui
    Sun, Yan
    EUROPEAN JOURNAL OF ENVIRONMENTAL AND CIVIL ENGINEERING, 2022, 26 (04) : 1453 - 1474
  • [33] Carbonation resistance of sustainable self-compacting concrete with recycled concrete aggregate and fly ash, slag, and silica fume
    Zong, Zhenyu
    Zhang, Qingyang
    Liu, Yi
    Guo, Zhanggen
    Lin, Shanli
    Jiang, Tianxun
    EUROPEAN JOURNAL OF ENVIRONMENTAL AND CIVIL ENGINEERING, 2024, 28 (09) : 2177 - 2199
  • [34] Performance characteristics of self-compacting concrete containing lateritic fine aggregate as a partial replacement to natural river sand
    Bhat, P. Kiran
    Rajasekaran, C.
    Das, B. B.
    MATERIALS RESEARCH EXPRESS, 2024, 11 (11)
  • [35] Properties and Leachability of Self-Compacting Concrete Incorporated with Fly Ash and Bottom Ash
    Kadir, Aeslina Abdul
    Hassan, Mohd Ikhmal Haqeem
    Jamaluddin, Norwati
    Abdullah, Mohd Mustafa Al Bakri
    INTERNATIONAL CONFERENCE ON INNOVATIVE RESEARCH - ICIR EUROINVENT 2016, 2016, 133
  • [36] Effect of MIRHA and Fly Ash in Ductile Self-Compacting Concrete on Abrasion and Impact Performance
    Nuruddin, Muhd Fadhil
    Azmee, Norzaireen Mohd
    Chang, Kok Yung
    STRUCTURAL, ENVIRONMENTAL, COASTAL AND OFFSHORE ENGINEERING, 2014, 567 : 393 - 398
  • [37] The effect of fly ash and silica fume on self-compacting high-performance concrete
    Mustapha, F. A.
    Sulaiman, A.
    Mohamed, R. N.
    Umara, S. A.
    MATERIALS TODAY-PROCEEDINGS, 2021, 39 : 965 - 969
  • [38] Exploring the potential of arecanut fibers and fly ash in enhancing the performance of self-compacting concrete
    Marulasiddappa, Sreedhara B.
    Khan H, Asif
    Mailar, Gireesh
    Balreddy, Muttana S.
    Kuntoji, Geetha
    Naganna, Sujay Raghavendra
    Journal of Engineering and Applied Science, 2024, 71 (01):
  • [39] Prediction of properties of self-compacting concrete containing fly ash using artificial neural network
    Douma, Omar Belalia
    Boukhatem, Bakhta
    Ghrici, Mohamed
    Tagnit-Hamou, Arezki
    NEURAL COMPUTING & APPLICATIONS, 2017, 28 : S707 - S718
  • [40] Prediction of properties of self-compacting concrete containing fly ash using artificial neural network
    Omar Belalia Douma
    Bakhta Boukhatem
    Mohamed Ghrici
    Arezki Tagnit-Hamou
    Neural Computing and Applications, 2017, 28 : 707 - 718