Performance Analysis of Self-Compacting Concrete with Use of Artificial Aggregate and Partial Replacement of Cement by Fly Ash

被引:3
|
作者
Patil, Abhay [1 ]
Jayale, Vivek [1 ]
Arunachalam, Krishna Prakash [2 ]
Ansari, Khalid [1 ]
Avudaiappan, Siva [3 ]
Agrawal, Dhiraj [1 ]
Kuthe, Abhaykumar M. [4 ]
Alharbi, Yousef R. [5 ]
Amir Khan, Mohammad [6 ]
Roco-Videla, Angel [7 ]
机构
[1] Yeshwantrao Chavan Coll Engn, Dept Civil Engn, Nagpur 441110, India
[2] Anna Univ, Dept Civil Engn, Univ Coll Engn Nagercoil, Nagercoil 629004, India
[3] Univ Tecnol Metropolitana, Fac Ciencias Construcc & Ordenamiento Terr, Dept Ciencias Construcc, Santiago 8330383, Chile
[4] Visvesvaraya Natl Inst Technol, Dept Mech Engn, Nagpur 440010, India
[5] King Saud Univ, Coll Engn, Dept Civil Engn, Riyadh 11421, Saudi Arabia
[6] Galgotias Coll Engn & Technol, Dept Civil Engn, Knowledge Pk 1, Greater Noida 201310, India
[7] Univ Amer, Fac Salud & Ciencias Sociales, Providencias 7500975, Santiago, Chile
关键词
self-compacting concrete; viscosity modifying agent; artificial aggregate; superplasticizer; fly ash; RICE HUSK; COMPRESSIVE STRENGTH; MECHANICAL PERFORMANCE; FRESH; PERMEABILITY; FIBERS; SCC;
D O I
10.3390/buildings14010143
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Artificial aggregate (AF), i.e., silico manganese (SiMn) slag aggregate, is a byproduct of ferromanganese and silico manganese alloy production. The utilization of industrial waste and industrial byproducts in construction has increased the aim of conserving natural resources to nurture a pollution-free environment. The current study examines the performance of the use of artificial aggregate (AF) and partial replacement of cement with fly ash (FA). The properties of fresh concrete, as well as the compressive and flexural strength and split tensile strength of concrete were evaluated. Seven mix proportions were prepared for M30-grade concrete. The first was a control mix (with 0% AF and FA), three other mixes contained varying amounts of AF (20%, 40%, and 60%) as a partial replacement of CA with AF. The average compressive strength of the control SCC was found to be 32.87 MPa (megapascals) at the age of 28 days, and after replacing 20% natural aggregate with artificial aggregate, the compressive strength increased by 8.27%, whereas for 40% and 60% replacement, it decreased by 4.46% and 12.55%, respectively. Further investigation was performed on the optimum value obtained by replacing 20% of CA with AF. At this percentage, cement was replaced by FA at (15%, 25%, and 35%) where at 15%, the average compressive strength increased by 7.41%, whereas for 25% and 35% replacement, it decreased by 7.47% and 17.19%, respectively. For SCAF20 and SCF15, all strengths were at maximum due to the increase in its density. The findings show that the development of advanced construction materials is environmentally sustainable.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Properties of self-compacting concrete incorporating bottom ash as a partial replacement of fine aggregate
    Kasemchaisiri, Ratchayut
    Tangtermsirikul, Somnuk
    SCIENCEASIA, 2008, 34 (01): : 87 - 95
  • [2] Performance of self-compacting concrete containing fly ash
    Khatib, J. M.
    CONSTRUCTION AND BUILDING MATERIALS, 2008, 22 (09) : 1963 - 1971
  • [3] Fly Ash in self-compacting concrete
    MAC SpA, Treviso, Italy
    不详
    Am. Concr. Inst. ACI Spec. Publ., (259-274):
  • [4] Improving the Mechanical and Durability Performance of No-Cement Self-Compacting Concrete by Fly Ash
    Djayaprabha, Herry Suryadi
    Chang, Ta-Peng
    Shih, Jeng-Ywan
    Nguyen, Hoang-Anh
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2020, 32 (09)
  • [5] Bagasse ash and rice husk ash as cement replacement in self-compacting concrete
    Krishnasamy, Thirumalai Raja
    Palanisamy, Murthi
    GRADEVINAR, 2015, 67 (01): : 23 - 31
  • [6] Production of Self-Compacting Concrete with Fly Ash Using Bagasse Ash as Fine Aggregate
    Muthadhi, Adhikesavan
    Banupriya, S.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF CIVIL ENGINEERING, 2022, 46 (03) : 2187 - 2200
  • [7] Production of Self-Compacting Concrete with Fly Ash Using Bagasse Ash as Fine Aggregate
    Adhikesavan Muthadhi
    S. Banupriya
    Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2022, 46 : 2187 - 2200
  • [8] Design of self-compacting concrete with fly ash
    Dinakar, Pasla
    MAGAZINE OF CONCRETE RESEARCH, 2012, 64 (05) : 401 - 409
  • [9] Performance keys on self-compacting concrete using recycled aggregate with fly ash by multi-criteria analysis
    Abed, Mohammed
    Rashid, Khuram
    Ul Rehman, Munib
    Ju, Minkwan
    JOURNAL OF CLEANER PRODUCTION, 2022, 378
  • [10] Investigation on Leaching Behaviour of Fly Ash and Bottom Ash Replacement in Self-Compacting Concrete
    Kadir, Aeslina Abdul
    Hassan, Mohd Ikhmal Haqeem
    Abdullah, Mohd Mustafa Al Bakri
    INTERNATIONAL CONFERENCE ON INNOVATIVE RESEARCH - ICIR EUROINVENT 2016, 2016, 133