Local derivations of conformal Galilei algebra

被引:0
|
作者
Alauadinov, Amir [1 ,2 ]
Bakhtiyor, Yusupov [2 ,3 ]
机构
[1] Karakalpak State Univ, Dept Math, Nukus, Uzbekistan
[2] Uzbek Acad Sci, VI Romanovskiy Inst Math, Univ St 9, Tashkent 100174, Uzbekistan
[3] Urgench State Univ, Dept Phys & Math, Urgench, Uzbekistan
关键词
Conformal Galilei algebra; derivations; Li algebras; local derivations; MODULES; FINITE;
D O I
10.1080/00927872.2023.2301539
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present paper is devoted to study local derivations on the conformal Galilei algebra. We prove that every local derivation on the conformal Galilei algebra is a derivation.
引用
收藏
页码:2489 / 2508
页数:20
相关论文
共 50 条
  • [21] ALGEBRA OF DERIVATIONS
    MULLER, WB
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 1973, 45 (3-4): : 339 - 343
  • [22] DIFFERENTIAL INVARIANTS OF THE GALILEI ALGEBRA
    FUSHCHICH, VI
    EGORCHENKO, IA
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1989, (04): : 30 - 34
  • [23] Leibniz homology of the Galilei algebra
    Biyogmam, Guy Roger
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (07)
  • [24] Local derivations on the Lie algebra W(2,2)
    Wu, Qingyan
    Gao, Shoulan
    Liu, Dong
    LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (04): : 631 - 643
  • [25] 2-Local derivations on the Schrodinger-Virasoro algebra
    Jiang, Qi
    Tang, Xiaomin
    LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (08): : 1328 - 1345
  • [26] ON SOLUTIONS FOR DERIVATIONS OF A NOETHERIAN k-ALGEBRA AND LOCAL SIMPLICITY
    Baltazar, Rene
    Pan, Ivan
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (07) : 2739 - 2747
  • [27] REDUCTION OF THE REPRESENTATION OF THE GENERALIZED POINCARE ALGEBRA BY THE GALILEI ALGEBRA
    FUSHCHICH, VI
    NIKITIN, AG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (07): : 2319 - 2330
  • [28] The associative algebra of derivations of a group algebra
    Creedon, Leo
    Hughes, Kieran
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (11)
  • [29] Inner Derivations and Weak-2-Local Derivations on the C*-Algebra C0(L, A)
    Jorda, Enrique
    Peralta, Antonio M.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2017, 89 (01) : 89 - 110
  • [30] On Casimir operators of conformal Galilei algebras
    Alshammari, Fahad
    Isaac, Phillip S.
    Marquette, Ian
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (01)