Pixel-Centric Context Perception Network for Camouflaged Object Detection

被引:5
|
作者
Song, Ze [1 ,2 ]
Kang, Xudong [3 ]
Wei, Xiaohui [1 ,2 ]
Li, Shutao [1 ,2 ]
机构
[1] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China
[2] Hunan Univ, Key Lab Visual Percept & Artificial Intelligence H, Changsha 410082, Peoples R China
[3] Hunan Univ, Sch Robot, Changsha 410082, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Camouflaged object detection (COD); salient object detection (SOD); SALIENT OBJECTS;
D O I
10.1109/TNNLS.2023.3319323
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Camouflaged object detection (COD) aims to identify object pixels visually embedded in the background environment. Existing deep learning methods fail to utilize the context information around different pixels adequately and efficiently. In order to solve this problem, a novel pixel-centric context perception network (PCPNet) is proposed, the core of which is to customize the personalized context of each pixel based on the automatic estimation of its surroundings. Specifically, PCPNet first employs an elegant encoder equipped with the designed vital component generation (VCG) module to obtain a set of compact features rich in low-level spatial and high-level semantic information across multiple subspaces. Then, we present a parameter-free pixel importance estimation (PIE) function based on multiwindow information fusion. Object pixels with complex backgrounds will be assigned with higher PIE values. Subsequently, PIE is utilized to regularize the optimization loss. In this way, the network can pay more attention to those pixels with higher PIE values in the decoding stage. Finally, a local continuity refinement module (LCRM) is used to refine the detection results. Extensive experiments on four COD benchmarks, five salient object detection (SOD) benchmarks, and five polyp segmentation benchmarks demonstrate the superiority of PCPNet with respect to other state-of-the-art methods.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [31] Camouflaged Object Detection
    Fan, Deng-Ping
    Ji, Ge-Peng
    Sun, Guolei
    Cheng, Ming-Ming
    Shen, Jianbing
    Shao, Ling
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 2774 - 2784
  • [32] Affinity CNN: Learning Pixel-Centric Pairwise Relations for Figure/Ground Embedding
    Maire, Michael
    Narihira, Takuya
    Yu, Stella X.
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 174 - 182
  • [33] Edge Perception Camouflaged Object Detection Under Frequency Domain Reconstruction
    Liu, Zijian
    Deng, Xiaoheng
    Jiang, Ping
    Lv, Conghao
    Min, Geyong
    Wang, Xin
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (10) : 10194 - 10207
  • [34] Camouflaged Object Segmentation with Omni Perception
    Haiyang Mei
    Ke Xu
    Yunduo Zhou
    Yang Wang
    Haiyin Piao
    Xiaopeng Wei
    Xin Yang
    International Journal of Computer Vision, 2023, 131 : 3019 - 3034
  • [35] Camouflaged Object Segmentation with Omni Perception
    Mei, Haiyang
    Xu, Ke
    Zhou, Yunduo
    Wang, Yang
    Piao, Haiyin
    Wei, Xiaopeng
    Yang, Xin
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 131 (11) : 3019 - 3034
  • [36] Edge-Aware Mirror Network for Camouflaged Object Detection
    Sun, Dongyue
    Jiang, Shiyao
    Qi, Lin
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 2465 - 2470
  • [37] SPANet: Spatial perceptual activation network for camouflaged object detection
    Zhang, Jianhao
    Yang, Gang
    Dai, Xun
    Yang, Pengyu
    IET COMPUTER VISION, 2024,
  • [38] Designing a Lightweight Convolutional Neural Network for Camouflaged Object Detection
    Gonzales, Mark Edward M.
    Ibrahim, Hans Oswald A.
    Ong, Elyssia Barrie H.
    Laguna, Ann Franchesca B.
    2024 IEEE 48TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC 2024, 2024, : 179 - 187
  • [39] Deep Texton-Coherence Network for Camouflaged Object Detection
    Zhai, Wei
    Cao, Yang
    Xie, HaiYong
    Zha, Zheng-Jun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 5155 - 5165
  • [40] ZoomNeXt: A Unified Collaborative Pyramid Network for Camouflaged Object Detection
    Pang, Youwei
    Zhao, Xiaoqi
    Xiang, Tian-Zhu
    Zhang, Lihe
    Lu, Huchuan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 9205 - 9220