Target Therapy for Buried Interface Enables Stable Perovskite Solar Cells with 25.05% Efficiency

被引:105
|
作者
Ji, Xiaofei [1 ,2 ]
Bi, Leyu [1 ,3 ,4 ,5 ]
Fu, Qiang [3 ,4 ,5 ]
Li, Bolin
Wang, Junwei [1 ]
Jeong, Sang Young [6 ]
Feng, Kui [1 ]
Ma, Suxiang [1 ]
Liao, Qiaogan [1 ]
Lin, Francis R. [3 ,4 ,5 ]
Woo, Han Young [6 ]
Lu, Linfeng [2 ,7 ]
Jen, Alex K. -Y. [3 ,4 ,5 ]
Guo, Xugang [1 ]
机构
[1] Southern Univ Sci & Technol SUSTech, Dept Mat Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China
[2] Chinese Acad Sci, Shanghai Adv Res Inst, Interdisciplinary Res Ctr, 99 Haike Rd, Zhangjiang Hitech Pk, Shanghai 201210, Peoples R China
[3] City Univ Hong Kong, Dept Mat Sci & Engn, Kowloon, Hong Kong 999077, Peoples R China
[4] City Univ Hong Kong, Dept Chem, Kowloon, Hong Kong 999077, Peoples R China
[5] City Univ Hong Kong, Hong Kong Inst Clean Energy, Kowloon, Hong Kong 999077, Peoples R China
[6] Korea Univ, Dept Chem, Anamro 145, Seoul 02841, South Korea
[7] Jinneng Clean Energy Technol Ltd, Lvliang 032100, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
buried interface; defect passivation; oxalate; perovskite solar cells; SNO2; FILMS;
D O I
10.1002/adma.202303665
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The buried interface in perovskite solar cells (PSCs) is pivotal for achieving high efficiency and stability. However, it is challenging to study and optimize the buried interface due to its non-exposed feature. Here, a facile and effective strategy is developed to modify the SnO2/perovskite buried interface by passivating the buried defects in perovskite and modulating carrier dynamics via incorporating formamidine oxalate (FOA) in SnO2 nanoparticles. Both formamidinium and oxalate ions show a longitudinal gradient distribution in the SnO2 layer, mainly accumulating at the SnO2/perovskite buried interface, which enables high-quality upper perovskite films, minimized defects, superior interface contacts, and matched energy levels between perovskite and SnO2. Significantly, FOA can simultaneously reduce the oxygen vacancies and tin interstitial defects on the SnO2 surface and the FA(+)/Pb2+ associated defects at the perovskite buried interface. Consequently, the FOA treatment significantly improves the efficiency of the PSCs from 22.40% to 25.05% and their storage- and photo-stability. This method provides an effective target therapy of buried interface in PSCs to achieve very high efficiency and stability.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Universal buried interface modification with lead iodide for efficient and stable perovskite solar cells
    Nguyen, Dang-Thuan
    Bui, Anh Dinh
    Walter, Daniel
    Nguyen, Khoa
    Zhan, Hualin
    Ta, Xuan Minh Chau
    Tabi, Grace Dansoa
    Tran-Phu, Thanh
    Chang, Li-Chun
    Huang, Keqing
    Truong, Minh Anh
    Wakamiya, Atsushi
    Adhikari, Sunita Gautam
    Nguyen, Hieu
    Haggren, Anne
    Ahmad, Viqar
    Duong, Thanh-Tung
    Cuong, Nguyen Duy
    Shen, Heping
    Catchpole, Kylie
    Weber, Klaus
    White, Thomas
    Duong, The
    JOURNAL OF MATERIALS CHEMISTRY A, 2025,
  • [22] Maltose as an Ecofriendly Modifier of the Buried Interface for Efficient and Stable Inverted Perovskite Solar Cells
    Yang, Boping
    Pan, Yili
    Ding, Yu
    Ouyang, Dan
    Zhang, Hong
    ENERGY TECHNOLOGY, 2022, 10 (09)
  • [23] Symmetric Polar Molecule Optimized Buried Interface for Stable Flexible Perovskite Solar Cells
    Wang, Yan
    Cao, Qin
    Xiang, Xuwu
    Zhou, Jie
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (50): : 18265 - 18275
  • [24] Amphoteric Ion Bridged Buried Interface for Efficient and Stable Inverted Perovskite Solar Cells
    Zhang, Yuling
    Yu, Runnan
    Li, Minghua
    He, Zhangwei
    Dong, Yiman
    Xu, Zhiyang
    Wang, Ruyue
    Ma, Zongwen
    Tan, Zhanao
    ADVANCED MATERIALS, 2024, 36 (01)
  • [25] π-Interactions suppression of buried interface defects for efficient and stable inverted perovskite solar cells
    Chen, Hui
    Yang, Jiabao
    Cao, Qi
    Wang, Tong
    Pu, Xingyu
    He, Xilai
    Chen, Xingyuan
    Li, Xuanhua
    NANO ENERGY, 2023, 117
  • [26] A multifunctional chemical linker in a buried interface for stable and efficient planar perovskite solar cells
    Geng, Quanming
    Xu, Zong
    Song, Wenwu
    Hu, Yanqiang
    Sun, Guangping
    Wang, Jin
    Wang, Minmin
    Sun, Tongming
    Tang, Yanfeng
    Zhang, Shufang
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (36) : 21697 - 21704
  • [27] Hexylammonium Acetate-Regulated Buried Interface for Efficient and Stable Perovskite Solar Cells
    Hu, Ruiyuan
    Wang, Taomiao
    Wang, Fei
    Li, Yongjun
    Sun, Yonggui
    Liang, Xiao
    Zhou, Xianfang
    Yang, Guo
    Li, Qiannan
    Zhang, Fan
    Zhu, Quanyao
    Li, Xing'ao
    Hu, Hanlin
    NANOMATERIALS, 2024, 14 (08)
  • [28] Buried Interface Optimization for Flexible Perovskite Solar Cells with High Efficiency and Mechanical Stability
    Zhao, Dengjie
    Zhang, Chenxi
    Ren, Jingkun
    Li, Shiqi
    Wu, Yukun
    Sun, Qinjun
    Hao, Yuying
    SMALL, 2024, 20 (19)
  • [29] Buried interface modified by guanidinium iodide for enhanced efficiency and stability of perovskite solar cells
    Su, Zisheng
    Hu, Yue
    Su, Dasheng
    Yao, Guangping
    Xiao, Yaoming
    Wang, Lidan
    OPTICAL MATERIALS, 2023, 145
  • [30] Functionalized polymer modified buried interface for enhanced efficiency and stability of perovskite solar cells
    Zou, Hanjun
    Bi, Huan
    Chen, Yongheng
    Guo, Mengna
    Hou, Wenjing
    Su, Pengyu
    Zhou, Kai
    Yang, Chuanyao
    Gong, Xiangnan
    Xiao, Li
    Liu, Li
    NANOSCALE, 2023, 15 (05) : 2054 - 2060