shift-invariant spaces;
local fields;
frames;
Bessel systems;
Parseval wavelet;
generalized MRA;
space of negative dilates;
MULTIRESOLUTION ANALYSIS;
CONSTRUCTION;
WAVELETS;
SYSTEMS;
D O I:
10.5486/PMD.2023.9271
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let K be a local field of positive characteristic. We prove that if the space V of negative dilates of a Parseval wavelet of L2(K) has dimension function finite on a set of positive measure, then the intersection of the dilates of V is trivial. We also construct an example of a frame wavelet of L2(K) whose space of negative dilates is all of L2(K). The frame wavelet can be chosen to have frame bounds arbitrarily close to 1 and it has a dual frame wavelet.
机构:
Rhein Westfal TH Aachen, Lehrstuhl Math A, D-52056 Aachen, GermanyRhein Westfal TH Aachen, Lehrstuhl Math A, D-52056 Aachen, Germany
Fuehr, Hartmut
Xian, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou 510275, Guangdong, Peoples R ChinaRhein Westfal TH Aachen, Lehrstuhl Math A, D-52056 Aachen, Germany