A self-supervised learning network for remote heart rate measurement

被引:1
|
作者
Zhang, Nan [1 ]
Sun, Hong-Mei [1 ]
Ma, Jun-Rui [1 ]
Jia, Rui-Sheng [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Qingdao 266590, Peoples R China
关键词
Heart rate measurement; Remote photoplethysmography; Self-supervised learning; Frequency loss;
D O I
10.1016/j.measurement.2024.114379
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The rPPG technology is a facial video-based non-contact physiological parameter detection technology, which has been widely used in the measurement of heart rate, respiration, blood oxygen and other physiological parameters. Most of the current research hotspots in this field are based on deep learning methods, which typically necessitate a significant amount of data samples for training the neural network to obtain accurate measurement results. However, the high cost required to label the data samples limits the diffusion and application of the technique. To address the above problems, we propose a new self-supervised aimed at acquiring the ability to estimate rPPG signals from facial videos, eliminating the need for labeled data. The framework expands the unlabeled video samples into multiple positive/negative samples and uses contrast learning to obtain an rPPG signal estimation network, which outputs the corresponding rPPG signals of face videos. To promote the convergence of network training, a new frequency loss function is designed. This function can effectively shorten the distance between the frequencies of similar sample signals and push the distance between the frequencies of different sample signals far away, so as to enhance the frequency consistency between sample signals and make the model easier to learn the differences between different sample pairs. Our method is evaluated on four standard rPPG datasets, the experimental results show that the accuracy is close to the current best supervised method, and is superior to the previous self-supervised method without using any labeled data.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Self-Supervised Learning for Electroencephalography
    Rafiei, Mohammad H.
    Gauthier, Lynne V.
    Adeli, Hojjat
    Takabi, Daniel
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (02) : 1457 - 1471
  • [22] Self-Supervised Learning for Recommendation
    Huang, Chao
    Xia, Lianghao
    Wang, Xiang
    He, Xiangnan
    Yin, Dawei
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 5136 - 5139
  • [23] Credal Self-Supervised Learning
    Lienen, Julian
    Huellermeier, Eyke
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [24] Quantum self-supervised learning
    Jaderberg, B.
    Anderson, L. W.
    Xie, W.
    Albanie, S.
    Kiffner, M.
    Jaksch, D.
    QUANTUM SCIENCE AND TECHNOLOGY, 2022, 7 (03):
  • [25] FedUTN: federated self-supervised learning with updating target network
    Simou Li
    Yuxing Mao
    Jian Li
    Yihang Xu
    Jinsen Li
    Xueshuo Chen
    Siyang Liu
    Xianping Zhao
    Applied Intelligence, 2023, 53 : 10879 - 10892
  • [26] A Self-Supervised Learning Approach for Accelerating Wireless Network Optimization
    Zhang, Shuai
    Ajayi, Oluwaseun T.
    Cheng, Yu
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (06) : 8074 - 8087
  • [27] FedUTN: federated self-supervised learning with updating target network
    Li, Simou
    Mao, Yuxing
    Li, Jian
    Xu, Yihang
    Li, Jinsen
    Chen, Xueshuo
    Liu, Siyang
    Zhao, Xianping
    APPLIED INTELLIGENCE, 2023, 53 (09) : 10879 - 10892
  • [28] TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network
    Xu, Hao
    Hui, Ka-Hei
    Fu, Chi-Wing
    Zhang, Hao
    ACM TRANSACTIONS ON GRAPHICS, 2020, 39 (04):
  • [29] A Vector Spherical Convolutional Network Based on Self-supervised Learning
    Chen K.-X.
    Zhao J.-Y.
    Chen H.
    Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (06): : 1354 - 1368
  • [30] Dynamic Self-Supervised Teacher-Student Network Learning
    Ye, Fei
    Bors, Adrian G.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) : 5731 - 5748