New regularization methods for convolutional kernel tensors

被引:0
|
作者
Guo, Pei-Chang [1 ]
机构
[1] China Univ Geosci, Sch Sci, Beijing 100083, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 11期
基金
中国国家自然科学基金;
关键词
regularization; singular values; doubly blocked banded Toeplitz matrices; convolutional kernel tensor;
D O I
10.3934/math.20231335
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Convolution is a very basic and important operation for convolutional neural networks. For neural network training, how to bound the convolutional layers is a currently popular research topic. Each convolutional layer is represented by a tensor, which corresponds to a structured transformation matrix. The objective is to ensure that the singular values of each transformation matrix are bounded around 1 by changing the entries of the tensor. We propose three new regularization terms for a convolutional kernel tensor and derive the gradient descent algorithm for each penalty function. Numerical examples are presented to demonstrate the effectiveness of the algorithms.
引用
收藏
页码:26188 / 26198
页数:11
相关论文
共 50 条
  • [31] Revisiting Convolutional Neural Networks from the Viewpoint of Kernel-Based Methods
    Jones, Corinne
    Roulet, Vincent
    Harchaoui, Zaid
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (04) : 1237 - 1247
  • [32] Convolutional regularization methods for 4D, x-ray CT reconstruction
    Clark, D. P.
    Badea, C. T.
    MEDICAL IMAGING 2019: PHYSICS OF MEDICAL IMAGING, 2019, 10948
  • [33] Fast GL(n)-Invariant Framework for Tensors Regularization
    Yaniv Gur
    Ofer Pasternak
    Nir Sochen
    International Journal of Computer Vision, 2009, 85
  • [34] Fast GL(n)-Invariant Framework for Tensors Regularization
    Gur, Yaniv
    Pasternak, Ofer
    Sochen, Nir
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2009, 85 (03) : 211 - 222
  • [35] MRI denoising via sparse tensors with reweighted regularization
    Yuan, Jianjun
    APPLIED MATHEMATICAL MODELLING, 2019, 69 : 552 - 562
  • [36] Kernel Bayesian Inference with Posterior Regularization
    Song, Yang
    Zhu, Jun
    Ren, Yong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [37] ANOMALIES, DIMENSIONAL REGULARIZATION, AND THE HEAT KERNEL
    DELBOURGO, R
    THOMPSON, G
    PHYSICAL REVIEW D, 1985, 32 (12): : 3300 - 3302
  • [38] Learning the kernel function via regularization
    Micchelli, CA
    Pontil, M
    JOURNAL OF MACHINE LEARNING RESEARCH, 2005, 6 : 1099 - 1125
  • [39] ON THE REGULARIZATION OF BILINEAR FORMS WITH HYPERSINGULAR KERNEL
    Aimi, Alessandra
    Panizzi, Stefano
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2013, 12 (02) : 184 - 210
  • [40] Sum and Product Kernel Regularization Networks
    Kudova, Petra
    Samalova, Terezie
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING - ICAISC 2006, PROCEEDINGS, 2006, 4029 : 56 - 65