Pseudo-Ricci-Yamabe solitons on real hypersurfaces in the complex projective space

被引:0
|
作者
Suh, Young Jin [1 ,2 ]
Woo, Changhwa [3 ]
机构
[1] Dept Math, Kyungpook Natl Univ, Daegu 41566, South Korea
[2] Kyungpook Natl Univ, RIRCM, Daegu 41566, South Korea
[3] Pukyong Natl Univ, Dept Appl Math, Busan 48547, South Korea
基金
新加坡国家研究基金会;
关键词
Ricci-Yamabe soliton; gradient pseudo-Ricci-Yamabe soliton; quasi-Yamabe soliton; gradient quasi-Ricci-Yamabe soli-ton; complex projective space; EINSTEIN HYPERSURFACES; SUBMANIFOLDS; MANIFOLDS;
D O I
10.2298/FIL2403833S
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give a complete classification of Hopf pseudo-Ricci-Yamabe solitons on real hypersurfaces in the complex projective space CPn. As its applications, first we give a complete classification of gradient pseudo-Ricci-Yamabe solitons on real hypersurfaces with isometric Reeb flow in the complex projective space CPn. Next we prove that a contact real hypersurface in CPn which admits the gradient pseudo-Ricci-Yamabe soliton is pseudo-Einstein.
引用
收藏
页码:833 / 853
页数:21
相关论文
共 50 条