HArmonized single-cell RNA-seq Cell type Assisted Deconvolution (HASCAD)

被引:0
|
作者
Chiu, Yen-Jung [1 ,2 ]
Ni, Chung-En [1 ]
Huang, Yen-Hua [1 ,3 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Inst Biomed Informat, Taipei 112, Taiwan
[2] Ming Chuan Univ, Dept Biomed Engn, Taoyuan 333, Taiwan
[3] Natl Yang Ming Chiao Tung Univ, Ctr Syst & Synthet Biol, Taipei 112, Taiwan
关键词
Harmonization; Cell composition deconvolution; RNA-seq; Deep learning; CANCER;
D O I
10.1186/s12920-023-01674-w
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
BackgroundCell composition deconvolution (CCD) is a type of bioinformatic task to estimate the cell fractions from bulk gene expression profiles, such as RNA-seq. Many CCD models were developed to perform linear regression analysis using reference gene expression signatures of distinct cell types. Reference gene expression signatures could be generated from cell-specific gene expression profiles, such as scRNA-seq. However, the batch effects and dropout events frequently observed across scRNA-seq datasets have limited the performances of CCD methods.MethodsWe developed a deep neural network (DNN) model, HASCAD, to predict the cell fractions of up to 15 immune cell types. HASCAD was trained using the bulk RNA-seq simulated from three scRNA-seq datasets that have been normalized by using a Harmony-Symphony based strategy. Mean square error and Pearson correlation coefficient were used to compare the performance of HASCAD with those of other widely used CCD methods. Two types of datasets, including a set of simulated bulk RNA-seq, and three human PBMC RNA-seq datasets, were arranged to conduct the benchmarks.ResultsHASCAD is useful for the investigation of the impacts of immune cell heterogeneity on the therapeutic effects of immune checkpoint inhibitors, since the target cell types include the ones known to play a role in anti-tumor immunity, such as three subtypes of CD8 T cells and three subtypes of CD4 T cells. We found that the removal of batch effects in the reference scRNA-seq datasets could benefit the task of CCD. Our benchmarks showed that HASCAD is more suitable for analyzing bulk RNA-seq data, compared with the two widely used CCD methods, CIBERSORTx and quanTIseq. We applied HASCAD to analyze the liver cancer samples of TCGA-LIHC, and found that there were significant associations of the predicted abundance of Treg and effector CD8 T cell with patients' overall survival.ConclusionHASCAD could predict the cell composition of the PBMC bulk RNA-seq and classify the cell type from pure bulk RNA-seq. The model of HASCAD is available at https://github.com/holiday01/HASCAD.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Decontamination of ambient RNA in single-cell RNA-seq with DecontX
    Shiyi Yang
    Sean E. Corbett
    Yusuke Koga
    Zhe Wang
    W Evan Johnson
    Masanao Yajima
    Joshua D. Campbell
    Genome Biology, 21
  • [32] Decontamination of ambient RNA in single-cell RNA-seq with DecontX
    Yang, Shiyi
    Corbett, Sean E.
    Koga, Yusuke
    Wang, Zhe
    Johnson, W. Evan
    Yajima, Masanao
    Campbell, Joshua D.
    GENOME BIOLOGY, 2020, 21 (01)
  • [33] Guidelines for reporting single-cell RNA-seq experiments
    Fullgrabe, Anja
    George, Nancy
    Green, Matthew
    Nejad, Parisa
    Aronow, Bruce
    Fexova, Silvie Korena
    Fischer, Clay
    Freeberg, Mallory Ann
    Huerta, Laura
    Morrison, Norman
    Scheuermann, Richard H.
    Taylor, Deanne
    Vasilevsky, Nicole
    Clarke, Laura
    Gehlenborg, Nils
    Kent, Jim
    Marioni, John
    Teichmann, Sarah
    Brazma, Alvis
    Papatheodorou, Irene
    NATURE BIOTECHNOLOGY, 2020, 38 (12) : 1384 - 1386
  • [34] Single-cell RNA-seq: advances and future challenges
    Saliba, Antoine-Emmanuel
    Westermann, Alexander J.
    Gorski, Stanislaw A.
    Vogel, Joerg
    NUCLEIC ACIDS RESEARCH, 2014, 42 (14) : 8845 - 8860
  • [35] A SMARTer solution to stranded single-cell RNA-seq
    Gandlur, S.
    Pesant, M.
    Bolduc, N.
    Lee, S.
    Hardy, C.
    Das, A.
    Bostick, M.
    Farmer, A.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 1716 - 1717
  • [36] Integrative Single-Cell RNA-Seq and Single-Cell ATAC-Seq Analysis of Human Plasma Cell Differentiation
    Alaterre, Elina
    Ovejero, Sara
    Espeli, Marion
    Fest, Thierry
    Cogne, Michel
    Milpied, Pierre
    Cavalli, Giacomo
    Moreaux, Jerome
    BLOOD, 2023, 142
  • [37] Practical Compass of Single-Cell RNA-Seq Analysis
    Okada, Hiroyuki
    Chung, Ung-il
    Hojo, Hironori
    CURRENT OSTEOPOROSIS REPORTS, 2024, 22 (05) : 433 - 440
  • [38] Embracing the dropouts in single-cell RNA-seq analysis
    Peng Qiu
    Nature Communications, 11
  • [39] How deep is enough in single-cell RNA-seq?
    Aaron M Streets
    Yanyi Huang
    Nature Biotechnology, 2014, 32 : 1005 - 1006
  • [40] Guidelines for reporting single-cell RNA-seq experiments
    Anja Füllgrabe
    Nancy George
    Matthew Green
    Parisa Nejad
    Bruce Aronow
    Silvie Korena Fexova
    Clay Fischer
    Mallory Ann Freeberg
    Laura Huerta
    Norman Morrison
    Richard H. Scheuermann
    Deanne Taylor
    Nicole Vasilevsky
    Laura Clarke
    Nils Gehlenborg
    Jim Kent
    John Marioni
    Sarah Teichmann
    Alvis Brazma
    Irene Papatheodorou
    Nature Biotechnology, 2020, 38 : 1384 - 1386