Genome-wide identification and comprehensive analysis of WRKY transcription factor family in safflower during drought stress

被引:9
|
作者
Song, Xianming [1 ,2 ]
Hou, Xianfei [1 ]
Zeng, Youling [2 ]
Jia, Donghai [1 ]
Li, Qiang [1 ]
Gu, Yuanguo [1 ]
Miao, Haocui [1 ]
机构
[1] Xinjiang Acad Agr Sci, Econ Crop Res Inst, Urumqi 830091, Peoples R China
[2] Xinjiang Univ, Coll Life Sci & Technol, Xinjiang Key Lab Biol Resources & Genet Engn, Urumqi 830046, Peoples R China
关键词
ACTIVATED EXPRESSION; ARABIDOPSIS WRKY33; CONFERS DROUGHT; TOLERANCE; PROTEIN; GENES; RESISTANCE; RESPONSES; PROMOTER; REGIONS;
D O I
10.1038/s41598-023-44340-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The WRKY family is an important family of transcription factors in plant development and stress response. Currently, there are few reports on the WRKY gene family in safflower (Carthamus tinctorius L.). In this study, a total of 82 CtWRKY genes were identified from the safflower genome and could be classified into 3 major groups and 5 subgroups based on their structural and phylogenetic characteristics. The results of gene structure, conserved domain and motif analyses indicated that CtWRKYs within the same subfamily maintained a consistent exon/intron organization and composition. Chromosomal localization and gene duplication analysis results showed that CtWRKYs were randomly localized on 12 chromosomes and that fragment duplication and purification selection may have played an important role in the evolution of the WRKY gene family in safflower. Promoter cis-acting element analysis revealed that the CtWRKYs contain many abiotic stress response elements and hormone response elements. Transcriptome data and qRT-PCR analyses revealed that the expression of CtWRKYs showed tissue specificity and a strong response to drought stress. Notably, the expression level of the CtWRKY55 gene rapidly increased more than eightfold under drought treatment and rehydration, indicating that it may be a key gene in response to drought stress. These results provide useful insights for investigating the regulatory function of the CtWRKY gene in safflower growth and development, as well as identifying key genes for future molecular breeding programmes.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Genome-Wide Identification of the Trihelix Transcription Factor Family and Functional Analysis of the Drought Stress-Responsive Genes in Melilotus albus
    Zhai, Qingyan
    Li, Hang
    Wei, Na
    Zhang, Jiyu
    Liu, Wenxian
    PLANTS-BASEL, 2023, 12 (21):
  • [22] Genome-Wide Identification of ERF Transcription Factor Family and Functional Analysis of the Drought Stress-Responsive Genes in Melilotus albus
    Wei, Na
    Zhai, Qingyan
    Li, Hang
    Zheng, Shuwen
    Zhang, Jiyu
    Liu, Wenxian
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (19)
  • [23] Genome-wide identification and characterization of the Populus WRKY transcription factor family and analysis of their expression in response to biotic and abiotic stresses
    Jiang, Yuanzhong
    Duan, Yanjiao
    Yin, Jia
    Ye, Shenglong
    Zhu, Jingru
    Zhang, Faqi
    Lu, Wanxiang
    Fan, Di
    Luo, Keming
    JOURNAL OF EXPERIMENTAL BOTANY, 2014, 65 (22) : 6629 - 6644
  • [24] Genome-Wide Identification and Characterization of the Oat (Avena sativa L.) WRKY Transcription Factor Family
    Liu, Kaiqiang
    Ju, Zeliang
    Jia, Zhifeng
    Liang, Guoling
    Ma, Xiang
    Liu, Wenhui
    GENES, 2022, 13 (10)
  • [25] Genome-wide identification of WRKY transcription factor family members in Miscanthus sinensis (Miscanthus sinensis Anderss)
    Yan, Yongkang
    Yan, Zhanyou
    Zhao, Guofang
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [26] Genome-wide identification of WRKY transcription factor family members in Miscanthus sinensis (Miscanthus sinensis Anderss)
    Yongkang Yan
    Zhanyou Yan
    Guofang Zhao
    Scientific Reports, 14
  • [27] Genome-Wide Identification of WRKY Transcription Factors in the Asteranae
    Guo, Hongyu
    Zhang, Yantong
    Wang, Zhuo
    Lin, Limei
    Cui, Minghui
    Long, Yuehong
    Xing, Zhaobin
    PLANTS-BASEL, 2019, 8 (10):
  • [28] Correction: A systematical genome-wide analysis and screening of WRKY transcription factor family engaged in abiotic stress response in sweetpotato
    Siyuan Liu
    Chengbin Zhang
    Fen Guo
    Qing Sun
    Jing Yu
    Tingting Dong
    Xin Wang
    Weihan Song
    Zongyun Li
    Xiaoqing Meng
    Mingku Zhu
    BMC Plant Biology, 23
  • [29] Genome-wide identification of soybean WRKY transcription factors in response to salt stress
    Yu, Yanchong
    Wang, Nan
    Hu, Ruibo
    Xiang, Fengning
    SPRINGERPLUS, 2016, 5
  • [30] Genome-wide identification and comprehensive analyses of NAC transcription factor gene family and expression analysis under Fusarium kyushuense and drought stress conditions in Passiflora edulis
    Yang, Qiang
    Li, Binqi
    Rizwan, Hafiz Muhammad
    Sun, Kaiwei
    Zeng, Jiajing
    Shi, Meng
    Guo, Tianxin
    Chen, Faxing
    FRONTIERS IN PLANT SCIENCE, 2022, 13