FFA-YOLOv7: Improved YOLOv7 Based on Feature Fusion and Attention Mechanism for Wearing Violation Detection in Substation Construction Safety

被引:2
|
作者
Chang, Rong [1 ]
Zhang, Bingzhen [1 ]
Zhu, Qianxin [1 ]
Zhao, Shan [2 ,3 ]
Yan, Kai [2 ,3 ]
Yang, Yang [2 ,3 ]
机构
[1] Yunnan Power Grid Corp, Yuxi Power Supply Bur, Yuxi 653100, Peoples R China
[2] Yunnan Normal Univ, Sch Informat Sci & Technol, Kunming 650500, Peoples R China
[3] Yunnan Normal Univ, Lab Pattern Recognit & Artificial Intelligence, Kunming 650500, Peoples R China
关键词
Compilation and indexing terms; Copyright 2025 Elsevier Inc;
D O I
10.1155/2023/9772652
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Ensuring compliance with safety regulations regarding wearing is essential for the safety and security of those working on substation construction sites. However, relying on supervisors to monitor workers in real time on the work site or through remote surveillance videos is both unreasonable and inefficient. A deep learning network approach named FFA-YOLOv7 is presented in this study that utilizes an improved version of YOLOv7 to detect violations of worker wearing in real time during power construction site surveillance. In YOLOv7, the feature pyramid network (FPN) of the neck stage is constructed through continuous upsampling and skip connections for feature fusion, after continuous downsampling of the backbone. However, this process can result in the loss of precise shallow position information. To tackle this issue, we have introduced a novel feature fusion pathway to the FPN architecture, enabling each layer not only to fuse feature maps from the same level during the downsampling course but also to fuse feature maps from shallower levels. This approach combines precise positional information from shallow layers with rich semantic information from deep layers. Additionally, we utilized attention after feature fusion in each layer to optimize the feature map fusion effect and achieve better detection accuracy performance. In order to conduct comparative experiments, we trained six variations of the YOLO model as detectors using a dataset gathered from realistic construction sites. The experimental results indicate that our proposed FFA-YOLOv7 attained a detection precision of 95.92% and a recall rate of 97.13%, demonstrating a high level of accuracy and a low rate of missed detections. These outcomes effectively satisfy the requirements for robust and accurate detection of real-world power construction violations.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Automatic Acne Detection Model Based on Improved YOLOv7
    Zhang, Delong
    Jin, Chunyang
    Zhang, Zhidong
    Cao, Xiyuan
    Xue, Chenyang
    IEEE ACCESS, 2024, 12 : 194390 - 194398
  • [42] Disease Detection of Asphalt Pavement Based on Improved YOLOv7
    Ni, Changshuang
    Li, Lin
    Luo, Wenting
    Qin, Yong
    Yang, Zhen
    Fu, Youhua
    Computer Engineering and Applications, 2023, 59 (13) : 305 - 316
  • [43] Deformable attention mechanism-based YOLOv7 structure for lung nodule detection
    Liu, Yu
    Ao, Yongcai
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (17): : 25450 - 25469
  • [44] Characteristic Elements Detection of Tangka Based on Improved YOLOv7
    Li, Guomin
    Shi, Wei
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON COMPUTER AND MULTIMEDIA TECHNOLOGY, ICCMT 2024, 2024, : 388 - 394
  • [45] Dense-YOLOv7: improved real-time insulator detection framework based on YOLOv7
    Yang, Zhengqiang
    Xie, Ruonan
    Liu, Linyue
    Li, Ning
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2024, 19 : 157 - 170
  • [46] YOLOv7-EAS: A Small Target Detection of Camera Module Surface Based on Improved YOLOv7
    Zou, Huatao
    He, Gang
    Yao, Yuan
    Zhu, Feng
    Zhou, Yang
    Chen, Xuan
    ADVANCED THEORY AND SIMULATIONS, 2023, 6 (11)
  • [47] Improved Underwater Object Detection Algorithm of YOLOv7
    Liang, Xiuman
    Li, Ran
    Yu, Haifeng
    Liu, Zhendong
    Computer Engineering and Applications, 2024, 60 (06) : 89 - 99
  • [48] Research on Improved YOLOv7 for Traffic Obstacle Detection
    Yang, Yifan
    Cui, Song
    Xiang, Xuan
    Bai, Yuxing
    Zang, Liguo
    Ding, Hongshan
    WORLD ELECTRIC VEHICLE JOURNAL, 2025, 16 (01):
  • [49] A Trash Detection Model Based on YOLOv7
    Liang, Hu
    Xu, Chao
    He, Tao
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON COMPUTER AND MULTIMEDIA TECHNOLOGY, ICCMT 2024, 2024, : 300 - 303
  • [50] Improved YOLOv7 for UAV Image Object Detection
    Zou, Zhentao
    Li, Zeping
    Computer Engineering and Applications, 60 (08): : 173 - 181