A Wideband Low RMS Phase/Gain Error mm-Wave Phase Shifter in 22-nm CMOS FDSOI

被引:13
|
作者
Bardeh, Mohammad Ghaedi [1 ]
Fu, Jierui [1 ]
Naseh, Navid [1 ]
Paramesh, Jeyanandh [1 ]
Entesari, Kamran [1 ]
机构
[1] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
来源
基金
美国国家科学基金会;
关键词
5G; active phase shifter (PS); fully depleted silicon on insulator (FDSOI) technology; in-phase and quadrature (IQ) network; mm-wave; RC poly-phase filter (PPF); vector modulator (VM); wideband phase shifter; X-BAND;
D O I
10.1109/LMWT.2023.3245987
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A 5-bit low-power and compact active mm-wave phase shifter (PS) with low rms phase/gain error is implemented in 22-nm CMOS fully depleted silicon on insulator (FDSOI) technology for 5G multi-input multi-output (MIMO) phased arrays. The proposed phase shifter uses a gain-boosted two-stage RC poly-phase filter (PPF), which maintains reasonable phase accuracy features while compensating for the gain response. The system uses a reactance invariant cascode vector modulator (VM), which results in constant loading effect for quadrature network, therefore improving rms phase/gain error. The phase shifter shows measured rms phase error of < 4? at 24-36 GHz. The measured mean gain is from -8.2 to -5 dB at 24-36 GHz, and the rms gain error is < 0.6 dB at 24-36 GHz. The total power consumption of the proposed phase shifter is 7.2 mW, and the chip area is 612 x 953 mu m including pads.
引用
收藏
页码:739 / 742
页数:4
相关论文
共 50 条
  • [21] An LO phase shifter with frequency tripling and phase detection in 28 nm FD-SOI CMOS for mm-wave 5G transceivers
    Gannedahl, Rikard
    Sjoland, Henrik
    ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2023, 114 (01) : 1 - 11
  • [22] An LO phase shifter with frequency tripling and phase detection in 28 nm FD-SOI CMOS for mm-wave 5G transceivers
    Rikard Gannedahl
    Henrik Sjöland
    Analog Integrated Circuits and Signal Processing, 2023, 114 : 1 - 11
  • [23] Design of An 80GHz Passive Vector Modulated Phase Shifter In 22-nm CMOS SOI Technology
    Liu, Siyuan
    Shu, Guoxiang
    Li, Mingze
    Tang, Jiawei
    Liu, Hang
    Guo, Guanqin
    He, Wenlong
    2024 CROSS STRAIT RADIO SCIENCE AND WIRELESS TECHNOLOGY CONFERENCE, CSRSWTC 2024, 2024, : 70 - 72
  • [24] A Millimeter-Wave Concurrent LNA in 22-nm CMOS FDSOI for 5G Applications
    Fu, Jierui
    Bardeh, Mohammad Ghaedi
    Paramesh, Jeyanandh
    Entesari, Kamran
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2023, 71 (03) : 1031 - 1043
  • [25] A Frequency-Reconfigurable CMOS Active Phase Shifter for 5G mm-Wave Applications
    Xiong, Yitong
    Zeng, Xiaoping
    Li, Junbing
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2020, 67 (10) : 1824 - 1828
  • [26] MEMS Slow-Wave CPW Phase Shifter for mm-Wave Applications
    Gustavo P. Rehder
    Robert G. Bovadilla
    Franz S. Bedoya
    Bruno Reig
    Cedric Dehos
    Ariana L. C. Serrano
    Victoria Nasserddine
    Philippe Ferrari
    Journal of Infrared, Millimeter, and Terahertz Waves, 2020, 41 : 1227 - 1244
  • [27] Microfluidically Reconfigurable mm-Wave Slow Wave Phase Shifter With Integrated Actuation
    Mendoza, Jonas
    Mumcu, Gokhan
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2022, 32 (12) : 1415 - 1418
  • [28] MEMS Slow-Wave CPW Phase Shifter for mm-Wave Applications
    Rehder, Gustavo P.
    Bovadilla, Robert G.
    Bedoya, Franz S.
    Reig, Bruno
    Dehos, Cedric
    Serrano, Ariana L. C.
    Nasserddine, Victoria
    Ferrari, Philippe
    JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2020, 41 (10) : 1227 - 1244
  • [29] A 6-bit Phase Shifter with Low RMS Phase Error and Flat Gain across 1.9-2.6GHz
    Zhang, Pengfei
    Zhu, Yu
    Deng, Sha
    Chen, Cen
    Zhang, Rong
    Lin, Fujiang
    2015 ASIA-PACIFIC MICROWAVE CONFERENCE (APMC), VOLS 1-3, 2015,
  • [30] Wideband Continuously Tunable Phase Shifter With Phase Slope Tunability and Low Phase Error
    Li, Hao
    Guo, Xin
    Yu, Tianxin
    Zhu, Lei
    Wu, Wen
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2022, 70 (04) : 2147 - 2155