A review on the heat transfer performance of pulsating heat pipes

被引:8
|
作者
Rajale, Manoj J. [1 ]
Prasad, P. Issac [1 ]
Rao, B. Nageswara [1 ]
机构
[1] Koneru Lakshmaiah Educ Fdn Deemed Univ, Dept Mech Engn, Guntur 522502, Andhra Pradesh, India
关键词
Pulsating heat pipe; oscillating; check valves; tesla valves; heat transfer; ARTIFICIAL NEURAL-NETWORK; CLOSED-LOOP; THERMAL PERFORMANCE; TRANSFER ENHANCEMENT; WORKING FLUID; OPERATIONAL CHARACTERISTICS; BUBBLE GENERATION; FILLING RATIO; FLOW PATTERNS; START-UP;
D O I
10.1080/14484846.2021.2024340
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The miniaturisation of systems has widely attracted researchers to contribute to the thermal performance enhancement utilising efficient heat transfer devices. Pulsating heat pipe (PHP) is an inimitable passive two-phase energy conversion/transport device capable of transferring extensive heat energy by oscillating liquid slugs and vapour plugs from hot to cold areas suitable for the management of generation of heat in electronics. Several theoretical, experimental and visualisation studies are made on PHP to understand operational mechanisms and to arrive at optimal conditions. Although PHP has potential application in the field of heat management, its effective utilisation is limited due to complex operational mechanisms.It is observed that PHPs are effective and reliable devices for utilisation in numerous energy systems. It is observed that PHPs are effective and reliable devices for utilisation in numerous energy systems. Advanced research is directed towards numerical simulations on the evaluation of PHP performance with non-conventional working fluids. It is found that the use of ternary hybrid nanofluid in PHP has scope for research work. The objective of this paper is to review the existing methodologies for enhancing the PHP overall performance and its applications.
引用
收藏
页码:1658 / 1702
页数:45
相关论文
共 50 条
  • [41] Characterizing Helium Pulsating Heat Pipes
    Pfotenhauer, J. M.
    Fonseca, L. D.
    Xu, C.
    Miller, F. K.
    27TH INTERNATIONAL CRYOGENICS ENGINEERING CONFERENCE AND INTERNATIONAL CRYOGENIC MATERIALS CONFERENCE 2018 (ICEC-ICMC 2018), 2019, 502
  • [42] Heat transfer mechanisms in heat pipes using nanofluids - A review
    Gupta, Naveen Kumar
    Tiwari, Arun Kumar
    Ghosh, Subrata Kumar
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2018, 90 : 84 - 100
  • [43] Thermal characterization of pulsating heat pipes
    Xu, Guoping
    Liang, Shibin
    Vogel, Marlin
    2006 PROCEEDINGS 10TH INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONICS SYSTEMS, VOLS 1 AND 2, 2006, : 552 - +
  • [44] Heat transfer of pulsating laminar flow in pipes with wall thermal inertia
    Yuan, Hongsheng
    Tan, Sichao
    Wen, Jing
    Zhuang, Nailiang
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2016, 99 : 152 - 160
  • [45] An Experimental Investigation on Heat Transfer Performance of Nanofluid Pulsating Heat Pipe
    Hongwei Jia
    Li Jia
    Zetao Tan
    Journal of Thermal Science, 2013, 22 (05) : 484 - 490
  • [46] Experimental study on heat transfer performance of pulsating heat pipe with refrigerants
    Xingyu Wang
    Li Jia
    Journal of Thermal Science, 2016, 25 : 449 - 453
  • [47] Experimental Study on Heat Transfer Performance of Pulsating Heat Pipe with Refrigerants
    Wang Xingyu
    Jia Li
    JOURNAL OF THERMAL SCIENCE, 2016, 25 (05) : 449 - 453
  • [48] Isothermal Performance of Heat Pipes: A Review
    Zhang, Hongzhe
    Ye, Fang
    Guo, Hang
    Yan, Xiaoke
    ENERGIES, 2022, 15 (06)
  • [49] Heat transfer performance of pulsating heat pipe with hygroscopic salt solution
    Zhang H.
    Weng J.
    Cui X.
    Huagong Xuebao, 2019, 3 (874-882): : 874 - 882
  • [50] Research on the Manufacturing Process and Heat Transfer Performance of Ultra-Thin Heat Pipes: A Review
    Duan, Liuyang
    Li, Hang
    Du, Jinguang
    Liu, Kun
    He, Wenbin
    MATERIALS, 2022, 15 (15)