On Exact Computation of Tukey Depth Central Regions

被引:0
|
作者
Fojtik, Vit [1 ]
Laketa, Petra [1 ]
Mozharovskyi, Pavlo [2 ]
Nagy, Stanislav [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic
[2] Inst Polytech Paris, LTCI, Telecom Paris, Paris, France
关键词
Computational geometry; Depth contours; Depth regions; Halfspace depth; R package TukeyRegion; Tukey depth; HALF-SPACE DEPTH;
D O I
10.1080/10618600.2023.2257781
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Tukey (or halfspace) depth extends nonparametric methods toward multivariate data. The multivariate analogues of the quantiles are the central regions of the Tukey depth, defined as sets of points in the d-dimensional space whose Tukey depth exceeds given thresholds k. We address the problem of fast and exact computation of those central regions. First, we analyze an efficient Algorithm (A) from Liu, Mosler, and Mozharovskyi, and prove that it yields exact results in dimension d = 2, or for a low threshold k in arbitrary dimension. We provide examples where Algorithm (A) fails to recover the exact Tukey depth region for d > 2, and propose a modification that is guaranteed to be exact. We express the problem of computing the exact central region in its dual formulation, and use that viewpoint to demonstrate that further substantial improvements to our algorithm are unlikely. An efficient C++ implementation of our exact algorithm is freely available in the R package TukeyRegion.
引用
收藏
页码:699 / 713
页数:15
相关论文
共 50 条
  • [21] Properties of Statistical Depth with Respect to Compact Convex Random Sets: The Tukey Depth
    Gonzalez-De La Fuente, Luis
    Nieto-Reyes, Alicia
    Teran, Pedro
    [J]. MATHEMATICS, 2022, 10 (15)
  • [22] Estimating Tukey depth using incremental quantile estimators
    Hammer, Hugo L.
    Yazidi, Anis
    Rue, Havard
    [J]. PATTERN RECOGNITION, 2022, 122
  • [23] Efficient Estimation of Generative Models Using Tukey Depth
    Vo, Minh-Quan
    Nguyen, Thu
    Riegler, Michael A.
    Hammer, Hugo L.
    [J]. ALGORITHMS, 2024, 17 (03)
  • [24] Output-sensitive algorithms for Tukey depth and related problems
    David Bremner
    Dan Chen
    John Iacono
    Stefan Langerman
    Pat Morin
    [J]. Statistics and Computing, 2008, 18
  • [25] Output-sensitive algorithms for Tukey depth and related problems
    Bremner, David
    Chen, Dan
    Iacono, John
    Langerman, Stefan
    Morin, Pat
    [J]. STATISTICS AND COMPUTING, 2008, 18 (03) : 259 - 266
  • [26] Asymptotics for the Tukey depth process, with an application to a multivariate trimmed mean
    Massé, JC
    [J]. BERNOULLI, 2004, 10 (03) : 397 - 419
  • [27] Functional Classification and the Random Tukey Depth. Practical Issues
    Cuesta-Albertos, Juan A.
    Nieto-Reyes, Alicia
    [J]. COMBINING SOFT COMPUTING AND STATISTICAL METHODS IN DATA ANALYSIS, 2010, 77 : 123 - 130
  • [28] EXACT COMPUTATION SEQUENCES
    PELIN, A
    GALLIER, JH
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1986, 214 : 45 - 59
  • [29] Parameterized and exact computation
    Downey, R
    Langston, M
    Niedermeier, R
    [J]. THEORETICAL COMPUTER SCIENCE, 2006, 351 (03) : 295 - 295
  • [30] Concentration of the empirical level sets of Tukey's halfspace depth
    Brunel, Victor-Emmanuel
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2019, 173 (3-4) : 1165 - 1196