Flexible Variational Bayes Based on a Copula of a Mixture

被引:2
|
作者
Gunawan, David [1 ,3 ]
Kohn, Robert [2 ,3 ]
Nott, David [4 ,5 ]
机构
[1] Univ Wollongong, Sch Math & Appl Stat, Wollongong, Australia
[2] Univ New South Wales, Sch Econ, UNSW Business Sch, Sydney, Australia
[3] Australian Ctr Excellence Math & Stat Frontiers, Parkville, Australia
[4] Natl Univ Singapore, Dept Stat & Data Sci, Singapore, Singapore
[5] Natl Univ Singapore, Inst Operat Res & Analyt, Singapore, Singapore
关键词
Multimodal; Natural-gradient; Non-Gaussian posterior; Stochastic gradient; Variance reduction; INFERENCE; MODELS;
D O I
10.1080/10618600.2023.2262080
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Variational Bayes methods approximate the posterior density by a family of tractable distributions whose parameters are estimated by optimization. Variational approximation is useful when exact inference is intractable or very costly. Our article develops a flexible variational approximation based on a copula of a mixture, which is implemented by combining boosting, natural gradient, and a variance reduction method. The efficacy of the approach is illustrated by using simulated and real datasets to approximate multimodal, skewed and heavy-tailed posterior distributions, including an application to Bayesian deep feedforward neural network regression models. Supplementary materials, including appendices and computer code for this article, are available online.
引用
下载
收藏
页码:665 / 680
页数:16
相关论文
共 50 条
  • [31] Nonlinear filtering for spaceborne radars based on variational Bayes
    Yan W.
    Lan H.
    Wang Z.
    Jin S.
    Pan Q.
    Lan, Hua (lanhua@nwpu.edu.cn), 1600, Chinese Society of Astronautics (41):
  • [32] MULTIVIEW DEPTH MAP ENHANCEMENT BY VARIATIONAL BAYES INFERENCE ESTIMATION OF DIRICHLET MIXTURE MODELS
    Rana, Pravin Kumar
    Ma, Zhanyu
    Taghia, Jalil
    Flierl, Markus
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 1528 - 1532
  • [34] A Novel Nonparametric Estimation for Conditional Copula Functions Based on Bayes Theorem
    Li, Xinyao
    Zhang, Weihong
    He, Liangli
    IEEE ACCESS, 2019, 7 : 186182 - 186192
  • [35] Linear Gaussian Regression Filter based on Variational Bayes
    Wang, Xiaoxu
    Cui, Haoran
    Pan, Quan
    Liang, Yan
    Hu, Jinwen
    Xu, Zhao
    2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2018, : 2072 - 2077
  • [36] Distributed Fusion Target Tracking Based on Variational Bayes
    Hu Z.-T.
    Yang S.-B.
    Hu Y.-M.
    Zhou L.
    Jin Y.
    Yang L.-L.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2022, 50 (05): : 1058 - 1065
  • [37] Variational Bayes based approach to robust subspace learning
    Okatani, Takayuki
    Deguchi, Koichiro
    2007 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-8, 2007, : 1004 - +
  • [38] Bayes theorem-based and copula-based estimation for failure probability function
    Li, Xinyao
    Zhang, Weihong
    He, Liangli
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2020, 62 (01) : 131 - 145
  • [39] Fast copula variational inference
    Chi, Jinjin
    Ouyang, Jihong
    Zhang, Ang
    Wang, Xinhua
    Li, Ximing
    JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2022, 34 (02) : 295 - 310
  • [40] FLEXIBLE ONLINE MULTIVARIATE REGRESSION WITH VARIATIONAL BAYES AND THE MATRIX-VARIATE DIRICHLET PROCESS
    Ong, Victor Meng Hwee
    Nott, David J.
    Choi, Taeryon
    Jasra, Ajay
    FOUNDATIONS OF DATA SCIENCE, 2019, 1 (02): : 129 - 156