A Fitting Method to Characterize the Gaseous Venting Behavior of Lithium-Ion Batteries in a Sealed Chamber during Thermal Runaway

被引:1
|
作者
Li, Cheng [1 ]
Wang, Hewu [1 ]
Shi, Chao [2 ]
Wang, Yan [3 ]
Li, Yalun [1 ,4 ]
Ouyang, Minggao [1 ]
机构
[1] Tsinghua Univ, Sch Vehicle & Mobil, Beijing 100084, Peoples R China
[2] Dalian Jiaotong Univ, Coll Locomot & Rolling Stock Engn, Dalian 116028, Peoples R China
[3] Qingdao Univ Technol, Sch Mech & Automot Engn, Qingdao 266520, Peoples R China
[4] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
关键词
lithium-ion battery; thermal runaway; normalized gas amount; gas releasing rate; venting duration; venting pattern; venting system design; safety evaluation; GENERATION; MECHANISM; CELLS; OXIDE; MODEL; FIRE;
D O I
10.3390/en16237874
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The venting event of thermal runaway has attracted public attention due to safety issues aroused by frequent fire accidents of new energy vehicles. However, the quantitative description of venting behavior is incomplete for tests in a sealed chamber due to the initial violent injection. In this study, nine types of batteries covering 28 cases in total were employed to investigate the influence of energy density, ambient temperature, pressure, and SOC on the venting behavior, characterized by normalized gas amount; maximum gas releasing rate; and venting durations t50, t90, t95, and t99. Then, a 'two-point' fitting method was proposed to modify outcomes concerning real-time gas amounts. The results show that at 100% SOC, the normalized gas amount ranges within 0.075-0.105 mol/Ah for NCM batteries and 0.025-0.035 mol/L for LFP batteries, while the maximum gas releasing rate presents a strongly positive correlation with the capacity of NCM batteries (0.04-0.31 mol/s) and a slight increase for LFP batteries (0.02-0.06 mol/s). Eventually, the three venting patterns were summarized and advanced according to the energy density and SOC of the targeted battery. This research can provide a reference for risk evaluations of the venting process and safety design for structure and pressure relief in battery systems.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Monitoring and diagnostic approaches for thermal runaway in lithium-ion batteries
    Xu, Zengheng
    Zhou, Xiaoyan
    Fu, Jialong
    Li, Qiutong
    Tan, Zejie
    Fan, Xiaopeng
    Wang, Zhiming
    Tian, Bing
    Guo, Xin
    CHINESE SCIENCE BULLETIN-CHINESE, 2023, 68 (33): : 4501 - 4516
  • [32] Modelling and simulation of thermal runaway phenomenon in lithium-ion batteries
    Alshammari, Ali
    Al-Obaidi, Mudhar
    Staggs, John
    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, 2024, 19 (02)
  • [33] Microcalorimetry Analysis of Thermal Runaway Process in Lithium-ion Batteries
    Gu Xiaoyu
    Li Jin
    Sun Qian
    Wang Chaoyang
    ACTA CHIMICA SINICA, 2024, 82 (02) : 146 - 151
  • [34] Advances on Mechanism of Degradation and Thermal Runaway of Lithium-Ion Batteries
    Guo B.
    Liu X.
    He R.
    Gao X.
    Yan X.
    Yang S.
    Xiyou Jinshu/Chinese Journal of Rare Metals, 2024, 48 (02): : 225 - 239
  • [35] Prevent thermal runaway of lithium-ion batteries with minichannel cooling
    Xu, Jian
    Lan, Chuanjin
    Qiao, Yu
    Ma, Yanbao
    APPLIED THERMAL ENGINEERING, 2017, 110 : 883 - 890
  • [36] Investigating the Thermal Runaway Behavior and Early Warning Characteristics of Lithium-Ion Batteries by Simulation
    Wang, Xiaoyong
    Mi, Yuanze
    Zhao, Zihao
    Cai, Jiawen
    Yang, Donghui
    Tu, Fangfang
    Jiang, Yuanyang
    Xiang, Jiayuan
    Mi, Shengrun
    Wang, Ruobin
    Journal of Electronic Materials, 2024, 53 (12) : 7367 - 7379
  • [37] Review of polymers in the prevention of thermal runaway in lithium-ion batteries
    Allen, Jonathan
    ENERGY REPORTS, 2020, 6 : 217 - 224
  • [38] Thermal runaway behavior during overcharge for large-format Lithium-ion batteries with different packaging patterns
    Huang, Lvwei
    Zhang, Zhaosheng
    Wang, Zhenpo
    Zhang, Lei
    Zhu, Xiaoqing
    Dorrell, David D.
    JOURNAL OF ENERGY STORAGE, 2019, 25
  • [39] A multi-factor evaluation method for the thermal runaway risk of lithium-ion batteries
    Wang, Zhirong
    Chen, Shichen
    He, Xinrui
    Wang, Chao
    Zhao, Dan
    JOURNAL OF ENERGY STORAGE, 2022, 45
  • [40] Raman Spectrum Analysis Method of Thermal Runaway Gas from Lithium-ion Batteries
    Chen D.
    Hao C.
    Liu T.
    Han Z.
    Zhang W.
    Zhongguo Jiguang/Chinese Journal of Lasers, 2022, 49 (23):