Intercropping of Hordeum vulgare L. and Lupinus angustifolius L. causes the generation of prenylated flavonoids in Lupinus angustifolius L.

被引:1
|
作者
Andersen, Ida K. L. [1 ]
Dragsted, Lars O. [2 ]
Rasmussen, Jim [3 ]
Fomsgaard, Inge S. [1 ,4 ]
机构
[1] Aarhus Univ, Dept Agroecol, Slagelse, Denmark
[2] Univ Copenhagen, Dept Nutr Exercise & Sports, Frederiksberg, Denmark
[3] Aarhus Univ, Dept Agroecol, Tjele, Denmark
[4] Aarhus Univ, Dept Agroecol, Forsoegsvej 1, DK-4200 Slagelse, Denmark
关键词
Untargeted metabolomics; plant-plant interactions; pot experiment; plant-specialised metabolites; MASS-SPECTROMETRY; SECONDARY METABOLITES; MEDICAGO-TRUNCATULA; STRUCTURAL-ANALYSIS; NODULATION; GENE; LEGUME; WHEAT; ISOFLAVONOIDS; ACCUMULATION;
D O I
10.1080/17429145.2023.2255039
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
In agricultural production, intercropping is a widely used system with many benefits. Lupin (Lupinus angustifolius L.) is a legume that contains a large variety of plant secondary metabolites, which have multiple functions in the plant, e.g. signalling, nodulation and stress response. An untargeted metabolomics approach was applied to investigate how the metabolome of lupin was affected by intercropped barley (Hordeum vulgare L.). The only primary metabolite of lupin affected by intercropping was tryptophan. Several secondary metabolites were affected by intercropping in lupin, and five flavonoids were annotated hereof. The flavonoid levels were increased, and tryptophan levels decreased in lupin when intercropped. Two flavonoids are prenylated, and prenylated flavonoids are believed to play a role in the plant's stress response. Furthermore, flavonoids are involved in plant defence and the nodulation process. Thus the present flavonoids may affect regulation of lupin N-2-fixation activity.
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [21] Photoperiod sensitivity in narrow-leafed lupin (Lupinus angustifolius L.)
    Christiansen, J. L.
    Jornsgard, B.
    Jorgensen, S. T.
    Bibby, B. M.
    ACTA AGRICULTURAE SCANDINAVICA SECTION B-SOIL AND PLANT SCIENCE, 2008, 58 (04): : 365 - 371
  • [22] Adaptation of Lupinus angustifolius L. and L-pilosus Murr. to calcareous soils
    Brand, JD
    Tang, C
    Rathjen, AJ
    AUSTRALIAN JOURNAL OF AGRICULTURAL RESEARCH, 1999, 50 (06): : 1027 - 1033
  • [23] Protoplast isolation and culture for somatic hybridization of Lupinus angustifolius and L. subcarnosus
    Karin Sonntag
    Brigitte Ruge-Wehling
    Peter Wehling
    Plant Cell, Tissue and Organ Culture (PCTOC), 2009, 96 : 297 - 305
  • [24] Collection of Lupinus angustifolius L. germplasm and characterisation of morphological and molecular diversity
    Talhinhas, P
    Leitáo, J
    Neves-Martins, J
    GENETIC RESOURCES AND CROP EVOLUTION, 2006, 53 (03) : 563 - 578
  • [25] Protoplast isolation and culture for somatic hybridization of Lupinus angustifolius and L. subcarnosus
    Sonntag, Karin
    Ruge-Wehling, Brigitte
    Wehling, Peter
    PLANT CELL TISSUE AND ORGAN CULTURE, 2009, 96 (03) : 297 - 305
  • [26] The reaction of Lupinus angustifolius L. root meristematic cell nucleoli to lead
    Balcerzak, Lucja
    Glinska, Slawa
    Godlewski, Miroslaw
    PROTOPLASMA, 2011, 248 (02) : 353 - 361
  • [27] The reaction of Lupinus angustifolius L. root meristematic cell nucleoli to lead
    Łucja Balcerzak
    Sława Glińska
    Mirosław Godlewski
    Protoplasma, 2011, 248 : 353 - 361
  • [28] Alkaloid profile and antimicrobial activity of Lupinus angustifolius L. alkaloid extract
    Nurgun Erdemoglu
    Semiha Ozkan
    Fatma Tosun
    Phytochemistry Reviews, 2007, 6 (1) : 197 - 201
  • [29] Seed production in narrow-leafed lupins (Lupinus angustifolius L.).
    Millner, J. P.
    Tahir, Khalid Mahmood
    Black, C.
    AGRONOMY NEW ZEALAND, PROCEEDINGS, 2004, 34 : 97 - 107
  • [30] Inheritance of partial resistance to the brown spot disease in Lupinus angustifolius L.
    Bradley, FH
    Oram, RN
    Malafant, KW
    AUSTRALIAN JOURNAL OF AGRICULTURAL RESEARCH, 2002, 53 (08): : 919 - 929