Graph neural network architecture search for rotating machinery fault diagnosis based on reinforcement learning

被引:17
|
作者
Li, Jialin [1 ]
Cao, Xuan [1 ]
Chen, Renxiang [1 ]
Zhang, Xia [1 ]
Huang, Xianzhen [2 ]
Qu, Yongzhi [3 ]
机构
[1] Chongqing Jiaotong Univ, Chongqing Engn Lab Transportat Engn Applicat Robot, Chongqing 400074, Peoples R China
[2] Northeastern Univ, Sch Mech Engn & Automat, Shenyang 110819, Peoples R China
[3] Univ Minnesota Duluth, Dept Mech Ind Engn, Duluth, MN 55804 USA
基金
中国国家自然科学基金;
关键词
Rotating machinery; Fault diagnosis; Graph neural network; Neural architecture search; Reinforcement learning;
D O I
10.1016/j.ymssp.2023.110701
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In order to improve the accuracy of fault diagnosis, researchers are constantly trying to develop new diagnostic models. However, limited by the inherent thinking of human beings, it has always been difficult to build a pioneering architecture for rotating machinery fault diagnosis. In order to solve this problem, this paper uses reinforcement learning algorithm based on adjacency matrix to carry out network architecture search (NAS) of rotating machinery fault diagnosis model. A reinforcement learning agent for deep deterministic policy gradient (DDPG) is developed based on actor-critic neural networks. The observation state of reinforcement learning is used to develop the graph neural network (GNN) diagnosis model, and the diagnosis accuracy is fed back to the agent as a reward for updating the reinforcement learning parameters. The MFPT bearing fault datasets and the developed gear pitting fault experimental data are used to validate the proposed network architecture search method based on reinforcement learning (RL-NAS). The proposed method is proved to be practical and effective in various aspects such as fault diagnosis ability, search space, search efficiency and multi-working condition performance.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Graph neural network architecture search for rotating machinery fault diagnosis based on reinforcement learning
    Li, Jialin
    Cao, Xuan
    Chen, Renxiang
    Zhang, Xia
    Huang, Xianzhen
    Qu, Yongzhi
    Mechanical Systems and Signal Processing, 2023, 202
  • [2] Automated Model Generation for Machinery Fault Diagnosis Based on Reinforcement Learning and Neural Architecture Search
    Zhou, Jian
    Zheng, Lianyu
    Wang, Yiwei
    Wang, Cheng
    Gao, Robert X.
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [3] Exploiting graph neural network with one-shot learning for fault diagnosis of rotating machinery
    Yang, Shuai
    Chen, Xu
    Wang, Yu
    Bai, Yun
    Pu, Ziqiang
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (11) : 5279 - 5290
  • [4] Rotating machinery fault diagnosis based on feature extraction via an unsupervised graph neural network
    Feng, Jing
    Bao, Shouyang
    Xu, Xiaobin
    Zhang, Zhenjie
    Hou, Pingzhi
    Steyskal, Felix
    Dustdar, Schahram
    APPLIED INTELLIGENCE, 2023, 53 (18) : 21211 - 21226
  • [5] Rotating machinery fault diagnosis based on feature extraction via an unsupervised graph neural network
    Jing Feng
    Shouyang Bao
    Xiaobin Xu
    Zhenjie Zhang
    Pingzhi Hou
    Felix Steyskal
    Schahram Dustdar
    Applied Intelligence, 2023, 53 : 21211 - 21226
  • [6] Rotating machinery fault diagnosis based on transfer learning and an improved convolutional neural network
    Jiang, Li
    Zheng, Chunpu
    Li, Yibing
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (10)
  • [7] Research on Fault Diagnosis of Rotating Machinery Based on Quantum Neural Network
    Yun, Wang
    PROCEEDINGS OF 2018 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION, ELECTRONICS AND ELECTRICAL ENGINEERING (AUTEEE), 2018, : 306 - 310
  • [8] Fault diagnosis of rotating machinery based on wavelet transforms and Neural Network
    Roztocil, Jan
    Novak, Martin
    2010 INTERNATIONAL CONFERENCE ON APPLIED ELECTRONICS, 2010, : 293 - 298
  • [9] Fault Diagnosis of Rotating Machinery Based on Evolutionary Convolutional Neural Network
    Bai, Yihao
    Cheng, Weidong
    Wen, Weigang
    Liu, Yang
    SHOCK AND VIBRATION, 2022, 2022
  • [10] Rotating machinery fault diagnosis based on wavelet fuzzy neural network
    Peng, B
    Liu, ZQ
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS II, 2005, 187 : 527 - 534