Mullite Nanosheet/Titania Nanorod/Silica Composite Aerogels for High-Temperature Thermal Insulation

被引:11
|
作者
Ji, Qiyan [1 ]
Chen, Zizhong [1 ]
Xing, Shicui [1 ]
Jiao, Xiuling [1 ]
Chen, Dairong [1 ]
机构
[1] Shandong Univ, Natl Engn Res Ctr Colloidal Mat, Sch Chem & Chem Engn, Jinan 250100, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
mullite; composite aerogels; TiO2; thermal radiation shielded; thermal insulation; HEAT-RESISTANT; FIBERS; TIO2; MICROSTRUCTURE; ULTRALIGHT; EVOLUTION; STRENGTH; GROWTH;
D O I
10.1021/acsanm.3c03571
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ceramic aerogels play an essential role in the field of high-temperature insulation. However, the significant radiation heat transfer limits the practical applicability. Herein, we have chosen mullite nanosheets prepared successfully by chemical blowing as structural assembly units, modified on the surface of mullite nanosheets with TiO2 nanorods to reduce infrared radiation heat transfer, and prepared mullite nanosheet/TiO2 nanorod/silica composite aerogels by adding silica sols as hightemperature binder cast molding in the system. The preferred composite aerogels have good temperature resistance, and the linear shrinkage was measured to be only 2% after calcination at 1500 degrees C for 30 min and had a low thermal conductivity (0.0356 W center dot m(-1)center dot K-1 at room temperature and 0.118 W center dot m(-1)center dot K-1 at 1000 degrees C). This assembly concept pervades a strategy for developing porous aerogel materials for insulation and protection in extreme environments.
引用
收藏
页码:17218 / 17228
页数:11
相关论文
共 50 条
  • [41] Temperature-Dependent Thermal Parameter Identification of Ceramic Nanorod Aerogels Composite in the Ultrahigh Temperature Environment
    Shi, Guanghui
    Wu, Wenhua
    Lin, Ye
    Li, Qiang
    Lin, Xiaohu
    Mei, Yue
    INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2023, 15 (05)
  • [42] Flexible Silica Aerogel Composites for Thermal Insulation under High-Temperature and Thermal-Force Coupling Conditions
    Zhang, Tao
    Yu, Dongping
    Xu, Fuhao
    Kong, Yong
    Shen, Xiaodong
    ACS APPLIED NANO MATERIALS, 2024, 7 (06) : 6326 - 6338
  • [43] High-temperature hydroxylation of mullite
    Rüscher, CH
    Shimada, S
    Schneider, H
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2002, 85 (06) : 1616 - 1618
  • [44] HIGH-TEMPERATURE MULLITE FIBER
    FETTEROL.RN
    AMERICAN CERAMIC SOCIETY BULLETIN, 1972, 51 (04): : 426 - &
  • [45] THERMAL INSULATION GUNITED COATINGS OF MULLITE SILICA ROLL MATERIAL
    PIROGOV, YA
    VISHNEVSKII, II
    BABKINA, LA
    AKSELROD, EI
    REFRACTORIES, 1985, 26 (3-4): : 125 - 129
  • [46] Carbon layer encapsulation strategy for designing multifunctional core-shell nanorod aerogels as high-temperature thermal superinsulators
    Liu, Fengqi
    He, Chenbo
    Jiang, Yonggang
    Yang, Yaping
    Peng, Fei
    Liu, Lanfang
    Men, Jing
    Feng, Junzong
    Li, Liangjun
    Tang, Guihua
    Feng, Jian
    CHEMICAL ENGINEERING JOURNAL, 2023, 455
  • [47] HIGH-TEMPERATURE THERMAL-INSULATION TIZOLIT ARTICLES
    Khabarov, V. N.
    Zuev, A. V.
    REFRACTORIES AND INDUSTRIAL CERAMICS, 2010, 51 (02) : 79 - 82
  • [48] ANALYSIS OF AN ACTIVE HIGH-TEMPERATURE THERMAL INSULATION SYSTEM
    MARUYAMA, S
    VISKANTA, R
    AIHARA, T
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 1990, 11 (03) : 196 - 203
  • [49] Active thermal insulation for high-temperature chemical plant
    Lyubina, YL
    Suris, AL
    CHEMICAL AND PETROLEUM ENGINEERING, 2002, 38 (3-4) : 111 - 117
  • [50] THERMAL PROPERTIES AND APPLICATIONS OF HIGH-TEMPERATURE AIRCRAFT INSULATION
    GREEBLER, P
    JET PROPULSION, 1954, 24 (06): : 374 - 378