Data-driven modeling and parameter estimation of nonlinear systems

被引:3
|
作者
Kumar, Kaushal [1 ]
机构
[1] Heidelberg Univ, Inst Math, D-69120 Heidelberg, BW, Germany
来源
EUROPEAN PHYSICAL JOURNAL B | 2023年 / 96卷 / 07期
关键词
TRUST-REGION METHOD; COLORED NOISE; IDENTIFICATION; ALGORITHM; EQUATIONS;
D O I
10.1140/epjb/s10051-023-00574-3
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Nonlinear systems play a significant role in numerous scientific and engineering disciplines, and comprehending their behavior is crucial for the development of effective control and prediction strategies. This paper introduces a novel data-driven approach for accurately modeling and estimating parameters of nonlinear systems utilizing trust region optimization. The proposed method is applied to three well-known systems: the Van der Pol oscillator, the Damped oscillator, and the Lorenz system, which find broad applications in engineering, physics, and biology. The results demonstrate the efficacy of the approach in accurately identifying the parameters of these nonlinear systems, enabling a reliable characterization of their behavior. Particularly in chaotic systems like the Lorenz system, capturing the dynamics on the attractor proves to be crucial. Overall, this article presents a robust data-driven approach for parameter estimation in nonlinear dynamical systems, holding promising potential for real-world applications.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] PARAMETER ESTIMATION AND DATA-DRIVEN METHOD FOR FOREST FIRE PREDICTION
    Li, X.
    Tang, C.
    Zhang, M.
    Zhang, S.
    Li, S.
    Wang, Y.
    Sun, S.
    Liu, J.
    [J]. Mathematical and Computational Forestry and Natural-Resource Sciences, 2023, 15 (01): : 7 - 16
  • [32] Optimal control of an SIRD model with data-driven parameter estimation
    Khan, Md. Harun-Or-Rashid
    Ahmed, Mostak
    Sarker, M. M. Alam
    [J]. RESULTS IN CONTROL AND OPTIMIZATION, 2024, 14
  • [33] Data-Driven Fuzzy Modeling For Nonlinear dynamic System
    Hao Wan-Jun
    Qiao Yan-Hui
    Zhu Xue-Li
    Li Ze
    [J]. 2011 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, 2011, : 1095 - +
  • [34] Data-driven Modeling of Nonlinear Joints in Space Structures
    Zhang, Yonglei
    Wang, Xiaoyu
    Li, Xinyuan
    Wen, Hao
    Xu, Shidong
    [J]. 2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 5549 - 5553
  • [35] Data-driven modeling and analysis of nonlinear isolated mechanical
    Gupta, Sunit Kumar
    Bukhari, Mohammad A.
    Barry, Oumar R.
    Okwudire, Chinedum
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 204
  • [36] Nonlinear, data-driven modeling of cardiorespiratory control mechanisms
    Mitsis, Georgios D.
    [J]. 2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, : 4360 - 4366
  • [37] Maximum Likelihood Estimation in Data-Driven Modeling and Control
    Yin, Mingzhou
    Iannelli, Andrea
    Smith, Roy S. S.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (01) : 317 - 328
  • [38] Data-Driven Stabilization of Nonlinear Polynomial Systems With Noisy Data
    Guo, Meichen
    De Persis, Claudio
    Tesi, Pietro
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (08) : 4210 - 4217
  • [39] Data-Driven Modeling of the Nonlinear Dynamics of Passive Lower-Limb Prosthetic Systems
    Donahue, Seth
    Kingsbury, Trevor
    Takahashi, Kota
    Major, Matthew J.
    [J]. JOURNAL OF MECHANISMS AND ROBOTICS-TRANSACTIONS OF THE ASME, 2024, 16 (08):
  • [40] Fault Detection for Nonlinear Dynamic Systems With Consideration of Modeling Errors: A Data-Driven Approach
    Chen, Hongtian
    Li, Linlin
    Shang, Chao
    Huang, Biao
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (07) : 4259 - 4269