TEMPORAL SECOND-ORDER FINITE DIFFERENCE SCHEMES FOR VARIABLE-ORDER TIME-FRACTIONAL GENERALIZED OLDROYD-B FLUID MODEL

被引:0
|
作者
Wang, Fang [1 ]
Peng, Xin-Yu [1 ]
Shen, Wang-Cheng [1 ]
机构
[1] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha, Peoples R China
来源
THERMAL SCIENCE | 2023年 / 27卷 / 1B期
基金
中国国家自然科学基金;
关键词
Caputo fractional derivative; fractional Oldroyd-B fluid model; fractional diffusion equation; finite difference method; UNSTEADY ROTATING-FLOWS; MAXWELL FLUID;
D O I
10.2298/TSCI2301713W
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, we study the variable-order generalized time fractional Oldroyd-B fluid model, use the reduced order method and the L2-1 Sigma method to establish the differential format with second-order accuracy, prove the stability and conver-gence of the format, and give numerical examples to illustrate the effectiveness of the differential format.
引用
收藏
页码:713 / 720
页数:8
相关论文
共 50 条
  • [31] Wellposedness and regularity of the variable-order time-fractional diffusion equations
    Wang, Hong
    Zheng, Xiangcheng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (02) : 1778 - 1802
  • [32] Non-Standard Finite Difference Schemes for Solving Variable-Order Fractional Differential Equations
    Nagy, A. M.
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2021, 29 (03) : 623 - 632
  • [33] Non-Standard Finite Difference Schemes for Solving Variable-Order Fractional Differential Equations
    A. M. Nagy
    Differential Equations and Dynamical Systems, 2021, 29 : 623 - 632
  • [34] A second-order finite difference scheme for the multi-dimensional nonlinear time-fractional Schrodinger equation
    Liu, Jianfeng
    Wang, Tingchun
    Zhang, Teng
    NUMERICAL ALGORITHMS, 2023, 92 (02) : 1153 - 1182
  • [35] Generalized finite difference method with irregular mesh for a class of three-dimensional variable-order time-fractional advection-diffusion equations
    Wang Zhaoyang
    Sun HongGuang
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2021, 132 : 345 - 355
  • [36] Temporal second-order difference schemes for the nonlinear time-fractional mixed sub-diffusion and diffusion-wave equation with delay
    Alikhanov, Anatoly A.
    Asl, Mohammad Shahbazi
    Huang, Chengming
    Apekov, Aslan M.
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 464
  • [37] Fuzzy Logic based Variable-Order Fractional PI Control for Second-Order System
    Zhang Dingcheng
    Huang Jiacai
    Shi Xinxin
    Li Hongsneng
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 10527 - 10531
  • [38] A second-order scheme for a time-fractional diffusion equation
    Cen, Zhongdi
    Huang, Jian
    Le, Anbo
    Xu, Aimin
    APPLIED MATHEMATICS LETTERS, 2019, 90 : 79 - 85
  • [39] A Fast Second-Order ADI Finite Difference Scheme for the Two-Dimensional Time-Fractional Cattaneo Equation with Spatially Variable Coefficients
    Nong, Lijuan
    Yi, Qian
    Chen, An
    FRACTAL AND FRACTIONAL, 2024, 8 (08)
  • [40] A finite difference method for elliptic equations with the variable-order fractional derivative
    Shi, Siyuan
    Hao, Zhaopeng
    Du, Rui
    NUMERICAL ALGORITHMS, 2024,