TEMPORAL SECOND-ORDER FINITE DIFFERENCE SCHEMES FOR VARIABLE-ORDER TIME-FRACTIONAL GENERALIZED OLDROYD-B FLUID MODEL

被引:0
|
作者
Wang, Fang [1 ]
Peng, Xin-Yu [1 ]
Shen, Wang-Cheng [1 ]
机构
[1] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha, Peoples R China
来源
THERMAL SCIENCE | 2023年 / 27卷 / 1B期
基金
中国国家自然科学基金;
关键词
Caputo fractional derivative; fractional Oldroyd-B fluid model; fractional diffusion equation; finite difference method; UNSTEADY ROTATING-FLOWS; MAXWELL FLUID;
D O I
10.2298/TSCI2301713W
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, we study the variable-order generalized time fractional Oldroyd-B fluid model, use the reduced order method and the L2-1 Sigma method to establish the differential format with second-order accuracy, prove the stability and conver-gence of the format, and give numerical examples to illustrate the effectiveness of the differential format.
引用
收藏
页码:713 / 720
页数:8
相关论文
共 50 条
  • [1] TEMPORAL SECOND-ORDER FINITE DIFFERENCE SCHEMES FOR VARIABLE-ORDER TIME-FRACTIONAL WAVE EQUATIONS
    Du, Rui-lian
    Sun, Zhi-zhong
    Wang, Hong
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (01) : 104 - 132
  • [2] Temporal Second-Order Fast Finite Difference/Compact Difference Schemes for Time-Fractional Generalized Burgers' Equations
    Peng, Xiangyi
    Qiu, Wenlin
    Hendy, Ahmed S.
    Zaky, Mahmoud A.
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (02)
  • [3] FINITE DIFFERENCE SCHEMES FOR VARIABLE-ORDER TIME FRACTIONAL DIFFUSION EQUATION
    Sun, Hongguang
    Chen, Wen
    Li, Changpin
    Chen, Yangquan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (04):
  • [4] Second-Order Stable Finite Difference Schemes for the Time-Fractional Diffusion-Wave Equation
    Zeng, Fanhai
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 65 (01) : 411 - 430
  • [5] Second-Order Stable Finite Difference Schemes for the Time-Fractional Diffusion-Wave Equation
    Fanhai Zeng
    Journal of Scientific Computing, 2015, 65 : 411 - 430
  • [6] SECOND-ORDER SLIP FLOW OF A GENERALIZED OLDROYD-B FLUID THROUGH POROUS MEDIUM
    Liu, Yaqing
    Zheng, Liancun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2016, 9 (06): : 2031 - 2046
  • [7] Temporal second order difference schemes for the multi-dimensional variable-order time fractional sub-diffusion equations
    Du, Ruilian
    Alikhanov, Anatoly A.
    Sun, Zhi-Zhong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (10) : 2952 - 2972
  • [8] PULSATILE BLOOD FLOW IN CONSTRICTED TAPERED ARTERY USING A VARIABLE-ORDER FRACTIONAL OLDROYD-B MODEL
    Bakhti, Hamzah
    Azrar, Lahcen
    Baleanu, Dumitru
    THERMAL SCIENCE, 2017, 21 (01): : 29 - 40
  • [9] Optimal order finite difference local discontinuous Galerkin method for variable-order time-fractional diffusion equation
    Wei, Leilei
    Yang, Yanfang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 383
  • [10] A fast temporal second-order difference scheme for the time-fractional subdiffusion equation
    Sun, Hong
    Cao, Wanrong
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (03) : 1825 - 1846