PERCEPT: A New Online Change-Point Detection Method using Topological Data Analysis

被引:1
|
作者
Zheng, Xiaojun [1 ]
Mak, Simon [1 ]
Xie, Liyan [2 ]
Xie, Yao [3 ]
机构
[1] Duke Univ, Dept Stat Sci, Durham, NC 27708 USA
[2] Chinese Univ Hong Kong, Sch Data Sci, Shenzhen, Peoples R China
[3] Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn ISyE, Atlanta, GA 30332 USA
关键词
Change-point detection; Human gesture detection; Online monitoring; Persistent homology; Solar flare monitoring; Topological data analysis; TIME-SERIES; PERSISTENCE;
D O I
10.1080/00401706.2022.2124312
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Topological data analysis (TDA) provides a set of data analysis tools for extracting embedded topological structures from complex high-dimensional datasets. In recent years, TDA has been a rapidly growing field which has found success in a wide range of applications, including signal processing, neuroscience and network analysis. In these applications, the online detection of changes is of crucial importance, but this can be highly challenging since such changes often occur in low-dimensional embeddings within high-dimensional data streams. We thus propose a new method, called PERsistence diagram-based ChangE-PoinT detection (PERCEPT), which leverages the learned topological structure from TDA to sequentially detect changes. PERCEPT follows two key steps: it first learns the embedded topology as a point cloud via persistence diagrams, then applies a nonparametric monitoring approach for detecting changes in the resulting point cloud distributions. This yields a nonparametric, topology-aware framework which can efficiently detect online geometric changes. We investigate the effectiveness of PERCEPT over existing methods in a suite of numerical experiments where the data streams have an embedded topological structure. We then demonstrate the usefulness of PERCEPT in two applications on solar flare monitoring and human gesture detection.
引用
收藏
页码:162 / 178
页数:17
相关论文
共 50 条
  • [21] The Bethe Hessian and Information Theoretic Approaches for Online Change-Point Detection in Network Data
    Hwang, Neil
    Xu, Jiarui
    Bhattacharyya, Sharmodeep
    Chatterjee, Shirshendu
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2022, 84 (01): : 283 - 320
  • [22] Sequential Change-Point Detection via Online Convex Optimization
    Cao, Yang
    Xie, Liyan
    Xie, Yao
    Xu, Huan
    ENTROPY, 2018, 20 (02):
  • [23] Water quality monitoring with online change-point detection methods
    Ba, Amadou
    McKenna, Sean A.
    JOURNAL OF HYDROINFORMATICS, 2015, 17 (01) : 7 - 19
  • [24] Change-point detection for shifts in control charts using fuzzy shift change-point algorithms
    Lu, Kang-Ping
    Chang, Shao-Tung
    Yang, Miin-Shen
    COMPUTERS & INDUSTRIAL ENGINEERING, 2016, 93 : 12 - 27
  • [25] Collaborated Online Change-point Detection in Sparse Time Series for Online Advertising
    Zhang, Jie
    Wei, Zhi
    Yan, Zhenyu
    Pani, Abhishek
    2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2015, : 1099 - 1104
  • [26] Change-Point Detection in a Sequence of Bags-of-Data
    Koshijima, Kensuke
    Hino, Hideitsu
    Murata, Noboru
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2015, 27 (10) : 2632 - 2644
  • [27] Multiple Change-Point Detection in Spatiotemporal Seismicity Data
    Fiedler, Bernhard
    Zoeller, Gert
    Holschneider, Matthias
    Hainzl, Sebastian
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2018, 108 (3A) : 1147 - 1159
  • [28] Change-Point Detection in a Sequence of Bags-of-Data
    Koshijima, Kensuke
    Hino, Hideitsu
    Murata, Noboru
    2016 32ND IEEE INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2016, : 1560 - 1561
  • [29] Latent change-point detection in ordinal categorical data
    Wang, Junjie
    Ding, Dong
    Su, Qin
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2019, 35 (02) : 504 - 516
  • [30] Online Change-Point Detection in Sparse Time Series With Application to Online Advertising
    Zhang, Jie
    Wei, Zhi
    Yan, Zhenyu
    Zhou, MengChu
    Pani, Abhishek
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2019, 49 (06): : 1141 - 1151