REDUCTIONS OF 2-DIMENSIONAL SEMISTABLE REPRESENTATIONS WITH LARGE L-INVARIANT

被引:1
|
作者
Bergdall, John [1 ]
Levin, Brandon [2 ]
Liu, Tong [3 ]
机构
[1] Bryn Mawr Coll, Dept Math, 101 N Merion Ave, Bryn Mawr, PA 19010 USA
[2] Univ Arizona, Dept Math, 617 N Santa Rita Ave, Tucson, AZ 85721 USA
[3] Purdue Univ, Dept Math, 150 N Univ St, W Lafayette, IN 47907 USA
关键词
p-adic Hodge theory; semistable representations; local Galois representations modulo p; CONSTRUCTION; CONJECTURE; FORMS;
D O I
10.1017/S1474748022000081
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine reductions of 2-dimensional, irreducible, semistable, and non-crystalline representations of Gal ((Q) over bar (p)/Q(p) ) with Hodge-Tate weights 0 < k -1 and with r-invariant whose p-adic norm is sufficiently large, depending on k. Our main result provides the first systematic examples of the reductions for k >= p.
引用
收藏
页码:2619 / 2644
页数:26
相关论文
共 50 条