Determination of Topiramate and Carbamazepine in Plasma by Combined Dispersive Liquid-Liquid Microextraction and Gas Chromatography-Mass Spectrometry

被引:0
|
作者
Cabarcos-Fernandez, Pamela [1 ]
Tabernero-Duque, Maria Jesus [1 ]
Alvarez-Freire, Ivan [1 ]
Bermejo-Barrera, Ana Maria [1 ]
机构
[1] Univ Santiago de Compostela, Toxicol Sci Inst, Fac Med, Forens Toxicol Serv, C San Francisco s-n, Santiago De Compostela 15782, Spain
关键词
anticonvulsant drugs; gas chromatography-mass spectrometry; dispersive liquid-liquid microextraction; plasma samples; ANTIEPILEPTIC DRUGS; ACTIVE METABOLITES; PACKED SORBENT; HUMAN SERUM; BLOOD; LAMOTRIGINE; EXTRACTION; HPLC; CARBAMAZEPINE-10,11-EPOXIDE; OXCARBAZEPINE;
D O I
10.3390/separations11020051
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Dispersive liquid-liquid microextraction, an environmentally friendly extraction technique, followed by gas chromatography-mass spectrometry operating in selected ion monitoring (SIM) mode, is here presented for the simultaneous determination of two anticonvulsant drugs in plasma, Topiramate and Carbamazepine. Experimental parameters affecting the recovery of the proposed extraction method, such as the extraction and dispersion solvent, the extraction and dispersion volume, the sample amount, the pH of the aqueous phase, the ultrasound time, the centrifugation time and ionic strength, were investigated. The limits of detection for Topiramate and Carbamazepine were 0.01 and 0.025 mu g mL-1, and the limits of quantification were 0.025 mu g mL-1 and 0.05 mu g mL-1, respectively. The method is shown to be selective, accurate, precise and linear over the concentration ranges of 0.025-8 mu g mL-1 for Topiramate and 0.05-3 mu g mL-1 for Carbamazepine. The extraction recovery of the analytes ranged from 91.5% to 113.9%. The analytical method was successfully applied to real plasma samples received by the Forensic Toxicology Service of the Forensic Science Institute of Santiago de Compostela.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Determination of Phthalates in Milk by Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction and Gas Chromatography-Mass Spectrometry
    Tuncel, Semra G.
    Senlik, Damla
    ANALYTICAL LETTERS, 2016, 49 (09) : 1334 - 1343
  • [12] Dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry for the determination of pesticide residues in nutraceutical drops
    Szarka, Agnesa
    Turkova, Dominika
    Hrouzkova, Svetlana
    JOURNAL OF CHROMATOGRAPHY A, 2018, 1570 : 126 - 134
  • [13] Determination of organochlorine pesticides in water samples by dispersive liquid-liquid microextraction coupled to gas chromatography-mass spectrometry
    Cortada, Carol
    Vidal, Lorena
    Pastor, Raul
    Santiago, Noemi
    Canals, Antonio
    ANALYTICA CHIMICA ACTA, 2009, 649 (02) : 218 - 221
  • [14] Determination of volatile phenols in red wines by dispersive liquid-liquid microextraction and gas chromatography-mass spectrometry detection
    Farina, Laura
    Boido, Eduardo
    Carrau, Francisco
    Dellacassa, Eduardo
    JOURNAL OF CHROMATOGRAPHY A, 2007, 1157 (1-2) : 46 - 50
  • [15] Temperature sensitive polymer-dispersive liquid-liquid microextraction with gas chromatography-mass spectrometry for the determination of phenols
    Chen, Xiaomei
    Guo, Zhian
    Wang, Yi
    Liu, Yufeng
    Xu, Yidong
    Liu, Jie
    Li, Zhiqiang
    Zhao, Jingchan
    JOURNAL OF CHROMATOGRAPHY A, 2019, 1592 : 183 - 187
  • [16] Simultaneous determination of seven preservatives in food by dispersive liquid-liquid microextraction coupled with gas chromatography-mass spectrometry
    Ding, Mingzhen
    Liu, Weixi
    Peng, Jing
    Liu, Xiuhong
    Tang, Yu
    FOOD CHEMISTRY, 2018, 269 : 187 - 192
  • [17] Determination of nitrobenzenes and nitrochlorobenzenes in water samples using dispersive liquid-liquid microextraction and gas chromatography-mass spectrometry
    Zhang, Delin
    Zeng, Xiangying
    Yu, Zhiqiang
    Sheng, Guoying
    Fu, Jiamo
    ANALYTICAL METHODS, 2011, 3 (10) : 2254 - 2260
  • [18] Application of dispersive liquid-liquid microextraction for the determination of selected organochlorine pesticides in honey by gas chromatography-mass spectrometry
    Kujawski, Maciej W.
    Pinteaux, Emilie
    Namiesnik, Jacek
    EUROPEAN FOOD RESEARCH AND TECHNOLOGY, 2012, 234 (02) : 223 - 230
  • [19] Determination of Seven Antidepressants in Pericardial Fluid by Means of Dispersive Liquid-Liquid Microextraction and Gas Chromatography-Mass Spectrometry
    Cabarcos-Fernandez, P.
    Tabernero-Duque, M. J.
    Alvarez-Freire, I
    Bermejo-Barrera, A. M.
    JOURNAL OF ANALYTICAL TOXICOLOGY, 2022, 46 (02) : 146 - 156
  • [20] Dispersive liquid-liquid microextraction and gas chromatography-mass spectrometry determination of polychlorinated biphenyls and polybrominated diphenyl ethers in milk
    Liu, Xiujuan
    Zhao, Aijun
    Zhang, Aina
    Liu, Huanqiang
    Xiao, Wenjing
    Wang, Chengjun
    Wang, Xuedong
    JOURNAL OF SEPARATION SCIENCE, 2011, 34 (09) : 1084 - 1090