EM-test for homogeneity in location-scale mixture model with a structural scale

被引:0
|
作者
Ren, Pengcheng [1 ,2 ]
Yan, Xingyu [1 ,2 ]
Pu, Xiaolong [3 ]
机构
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou, Peoples R China
[2] Jiangsu Normal Univ, Jiangsu Prov Key Lab Educ Big Data Sci & Engn, RIMS, Xuzhou, Peoples R China
[3] East China Normal Univ, Sch Stat, KLATASDS MOE, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Bartlett correction; Computer experiments; EM-test; Homogeneity test; Mixture model; Small sample size; LIKELIHOOD-RATIO TEST; FINITE; ORDER; CONVERGENCE;
D O I
10.1080/03610918.2023.2254954
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The testing problem for the homogeneity of a location-scale mixture model is fundamental for subsequent statistical inference. In this paper, we employ the EM-test method to test the homogeneity of two commonly encountered location-scale mixture models with a structural scale, and we also establish the theoretical properties of test statistics. Further, to enhance the reliability of the test, based on the computer experiments approach, we develop a Bartlett-corrected approximate distribution for the proposed test statistics. Through Monte Carlo studies and real data example, the effectiveness of the proposed testing procedure is compared with that of the classical one, especially for small or moderate sample sizes.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] A Smooth Nonparametric, Multivariate, Mixed-Data Location-Scale Test
    Racine, Jeffrey S.
    Van Keilegom, Ingrid
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2020, 38 (04) : 784 - 795
  • [32] Preferences over location-scale family
    Wong, Wing-Keung
    Ma, Chenghu
    [J]. ECONOMIC THEORY, 2008, 37 (01) : 119 - 146
  • [33] Functional Location-Scale Model to Forecast Bivariate Pollution Episodes
    Oviedo-de la Fuente, Manuel
    Ordonez, Celestino
    Roca-Pardinas, Javier
    [J]. MATHEMATICS, 2020, 8 (06)
  • [34] The Cucconi Test for Location-scale Alternatives in Application to Asymmetric Hydrological Variables
    Rutkowska, Agnieszka
    Banasik, Kazimierz
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (03) : 986 - 1000
  • [35] On Entropy Test for Conditionally Heteroscedastic Location-Scale Time Series Models
    Lee, Sangyeol
    Kim, Minjo
    [J]. ENTROPY, 2017, 19 (08):
  • [36] Warped Metrics for Location-Scale Models
    Said, Salem
    Berthoumieu, Yannick
    [J]. GEOMETRIC SCIENCE OF INFORMATION, GSI 2017, 2017, 10589 : 631 - 638
  • [37] Preferences over location-scale family
    Wing-Keung Wong
    Chenghu Ma
    [J]. Economic Theory, 2008, 37 : 119 - 146
  • [38] A location-scale model for non-crossing expectile curves
    Schnabel, Sabine K.
    Eilers, Paul H. C.
    [J]. STAT, 2013, 2 (01): : 171 - 183
  • [39] On Outliers Detection for Location-Scale and Shape-Scale Families
    Bagdonavičius V.
    Nikulin M.
    Zerbet A.
    [J]. Journal of Mathematical Sciences, 2017, 225 (5) : 723 - 732
  • [40] DO ECONOMIC VARIABLES FOLLOW SCALE OR LOCATION-SCALE DISTRIBUTIONS?
    Antle, John M.
    [J]. AMERICAN JOURNAL OF AGRICULTURAL ECONOMICS, 2010, 92 (01) : 196 - 204