Landweber Iterative Method for an Inverse Source Problem of Time-Space Fractional Diffusion-Wave Equation

被引:0
|
作者
Yang, Fan [1 ]
Zhang, Yan [1 ]
Li, Xiao-Xiao [1 ]
机构
[1] Lanzhou Univ Technol, Sch Sci, Lanzhou 730050, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Inverse Source Problem; Time-Space Fractional Diffusion-Wave Equation; Landweber Iterative Regularization Method; Inverse Problem; Regularization Method; REGULARIZATION METHOD; UNKNOWN SOURCE; CAUCHY-PROBLEM;
D O I
10.1515/cmam-2022-0240
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we apply a Landweber iterative regularization method to determine a space-dependent source for a time-space fractional diffusion-wave equation from the final measurement. In general, this problem is ill-posed, and a Landweber iterative regularization method is used to obtain the regularization solution. Under the a priori parameter choice rule and the a posteriori parameter choice rule, we give the error estimates between the regularization solution and the exact solution, respectively. Some numerical results in the one-dimensional and two-dimensional cases show the utility of the used regularization method.
引用
收藏
页码:265 / 278
页数:14
相关论文
共 50 条
  • [31] Wavelets method for the time fractional diffusion-wave equation
    Heydari, M. H.
    Hooshmandasl, M. R.
    Ghaini, F. M. Maalek
    Cattani, C.
    PHYSICS LETTERS A, 2015, 379 (03) : 71 - 76
  • [32] An iterative method based on Nesterov acceleration for identifying space-dependent source term in a time-fractional diffusion-wave equation
    Zhang, Zhengqiang
    Guo, Shimin
    Zhang, Yuan -Xiang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 429
  • [33] A time-space spectral method for the time-space fractional Fokker-Planck equation and its inverse problem
    Zhang, Hui
    Jiang, Xiaoyun
    Yang, Xiu
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 320 : 302 - 318
  • [34] Determine a Space-Dependent Source Term in a Time Fractional Diffusion-Wave Equation
    X. B. Yan
    T. Wei
    Acta Applicandae Mathematicae, 2020, 165 : 163 - 181
  • [35] Determine a Space-Dependent Source Term in a Time Fractional Diffusion-Wave Equation
    Yon, X. B.
    Wei, T.
    ACTA APPLICANDAE MATHEMATICAE, 2020, 165 (01) : 163 - 181
  • [36] Uniqueness and stability for inverse source problem for fractional diffusion-wave equations
    Cheng, Xing
    Li, Zhiyuan
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2023, 31 (06): : 885 - 904
  • [37] Identification of Source Term for the Time-Fractional Diffusion-Wave Equation by Fractional Tikhonov Method
    Le Dinh Long
    Nguyen Hoang Luc
    Zhou, Yong
    Can Nguyen
    MATHEMATICS, 2019, 7 (10)
  • [38] FOURIER TRUNCATION METHOD FOR AN INVERSE SOURCE PROBLEM FOR SPACE-TIME FRACTIONAL DIFFUSION EQUATION
    Nguyen Huy Tuan
    Le Dinh Long
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [39] Identifying a fractional order and a space source term in a time-fractional diffusion-wave equation simultaneously
    Liao, Kaifang
    Wei, Ting
    INVERSE PROBLEMS, 2019, 35 (11)
  • [40] Galerkin Method for a Backward Problem of Time-Space Fractional Symmetric Diffusion Equation
    Zhang, Hongwu
    Lv, Yong
    SYMMETRY-BASEL, 2023, 15 (05):