An Attention-Based Multiscale Spectral-Spatial Network for Hyperspectral Target Detection

被引:6
|
作者
Feng, Shou [1 ,2 ,3 ]
Feng, Rui [1 ,2 ]
Liu, Jianfei [1 ,2 ]
Zhao, Chunhui [1 ,2 ]
Xiong, Fengchao [4 ]
Zhang, Lifu [3 ]
机构
[1] Harbin Engn Univ, Coll Informat & Commun Engn, Minist Ind & Informat Technol, Harbin 150001, Peoples R China
[2] Harbin Engn Univ, Key Lab Adv Marine Commun & Informat Technol, Minist Ind & Informat Technol, Harbin 150001, Peoples R China
[3] Chinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
[4] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Convolutional neural networks; Testing; Detectors; Training; Transformers; Object detection; Hyperspectral images (HSIs); Siamese structure; target detection; vision Transformer (ViT); SPARSE;
D O I
10.1109/LGRS.2023.3265938
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Deep-learning-based methods have made great progress in hyperspectral target detection (HTD). Unfortunately, the insufficient utilization of spatial information in most methods leaves deep-learning-based methods to confront ineffectiveness. To ameliorate this issue, an attention-based multiscale spectral-spatial detector (AMSSD) for HTD is proposed. First, the AMSSD leverages the Siamese structure to establish a similarity discrimination network, which can enlarge intraclass similarity and interclass dissimilarity to facilitate better discrimination between the target and the background. Second, 1-D convolutional neural network (CNN) and vision Transformer (ViT) are used combinedly to extract spectral-spatial features more feasibly and adaptively. The joint use of spectral-spatial information can obtain more comprehensive features, which promotes subsequent similarity measurement. Finally, a multiscale spectral-spatial difference feature fusion module is devised to integrate spectral-spatial difference features of different scales to obtain more distinguishable representation and boost detection competence. Experiments conducted on two HSI datasets indicate that the AMSSD outperforms seven compared methods.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Spectral-Spatial Large Kernel Attention Network for Hyperspectral Image Classification
    Wu, Chunran
    Tong, Lei
    Zhou, Jun
    Xiao, Chuangbai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 14
  • [42] A NOVEL CLASSIFICATION FRAMEWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON MULTISCALE SPECTRAL-SPATIAL CONVOLUTIONAL NETWORK
    Xu, Zhen
    Yu, Haoyang
    Zheng, Ke
    Gao, Lianru
    Song, Meiping
    2021 11TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2021,
  • [43] Multiscale spectral-spatial cross-extraction network for hyperspectral image classification
    Gao, Hongmin
    Wu, Hongyi
    Chen, Zhonghao
    Zhang, Yunfei
    Zhang, Yiyan
    Li, Chenming
    IET IMAGE PROCESSING, 2022, 16 (03) : 755 - 771
  • [44] A Decompressed Spectral-Spatial Multiscale Semantic Feature Network for Hyperspectral Image Classification
    Liu, Dongxu
    Li, Qingqing
    Li, Meihui
    Zhang, Jianlin
    REMOTE SENSING, 2023, 15 (18)
  • [45] A New Spectral-Spatial Algorithm Method for Hyperspectral Image Target Detection
    Wang Cai-ling
    Wang Hong-wei
    Hu Bing-liang
    Wen Jia
    Xu Jun
    Li Xiang-juan
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36 (04) : 1163 - 1169
  • [46] Attention-based Sparse and Collaborative Spectral Abundance Learning for Hyperspectral Subpixel Target Detection
    Zhu, Dehui
    Zhong, Ping
    Du, Bo
    Zhang, Liangpei
    NEURAL NETWORKS, 2024, 178
  • [47] Grouped Multi-Attention Network for Hyperspectral Image Spectral-Spatial Classification
    Lu, Ting
    Liu, Mengkai
    Fu, Wei
    Kang, Xudong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [48] Multilayer Global Spectral-Spatial Attention Network for Wetland Hyperspectral Image Classification
    Xie, Zhuojun
    Hu, Jianwen
    Kang, Xudong
    Duan, Puhong
    Li, Shutao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [49] Spectral-Spatial Attention Feature Extraction for Hyperspectral Image Classification Based on Generative Adversarial Network
    Liang, Hongbo
    Bao, Wenxing
    Shen, Xiangfei
    Zhang, Xiaowu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 10017 - 10032
  • [50] Parameter-Free Attention Network for Spectral-Spatial Hyperspectral Image Classification
    Paoletti, Mercedes E.
    Tao, Xuanwen
    Han, Lirong
    Wu, Zhaoyue
    Moreno-Alvarez, Sergio
    Roy, Swalpa Kumar
    Plaza, Antonio
    Haut, Juan M.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61