Local boundedness of variational solutions to nonlocal double phase parabolic equations

被引:4
|
作者
Prasad, Harsh [1 ]
Tewary, Vivek [2 ]
机构
[1] Tata Inst Fundamental Res, Ctr Applicable Math, Bangalore 560065, Karnataka, India
[2] Krea Univ, Sch Interwoven Arts & Sci, Sri City 517646, Andhra Pradesh, India
关键词
Nonlocal operators with nonstandard growth; Parabolic minimizers; Boundedness; ELLIPTIC-EQUATIONS; REGULARITY; MINIMIZERS; EXISTENCE; CALCULUS;
D O I
10.1016/j.jde.2022.12.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove local boundedness of variational solutions to the double phase equation partial derivative(t)u+ P.V. integral(N)(R) |u(x, t) - u(y, t)|(p-2)( u(x, t)- u(y, t)) |x - y|(N+ ps) + a(x, y) | u(x, t) - u(y, t)|(q-2)( u(x, t)- u(y, t)) | x - y|(N+ qs') similar to dy = 0, under the restrictions s, s'is an element of(0, 1), 1 < p <= q <= p(2s+ N/)N and the non-negative function (x, y) proves. a(x, y) is assumed to be measurable and bounded.
引用
收藏
页码:243 / 276
页数:34
相关论文
共 50 条