Revealing the roles of biochar derived from iron-rich fermented sludge residue in anaerobic digestion

被引:15
|
作者
Jin, Hong-Yu [1 ,2 ]
He, Zhang-Wei [1 ,2 ]
Ren, Yong-Xiang [1 ,2 ]
Zou, Zheng-Shuo [1 ,2 ]
Tang, Cong-Cong [1 ,2 ]
Zhou, Ai-Juan [3 ]
Liu, Wenzong [4 ]
Li, Zhihua [1 ,2 ]
Wang, Aijie [4 ]
机构
[1] Xian Univ Architecture & Technol, Sch Environm & Municipal Engn, Shaanxi Key Lab Environm Engn, Xian 710055, Peoples R China
[2] Xian Univ Architecture & Technol, Key Lab Northwest Water Resource Environm & Ecol, Minist Educ, Xian 710055, Peoples R China
[3] Taiyuan Univ Technol, Coll Environm Sci & Engn, Taiyuan 030024, Peoples R China
[4] Harbin Inst Technol Shenzhen, Sch Civil & Environm Engn, State Key Lab Urban Water Resource & Environm, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Anaerobic biological treatment; Waste activated sludge; Iron-rich sludge residue; Biochar; Energy and resource recovery; EXTRACELLULAR POLYMERIC SUBSTANCES; INTERSPECIES ELECTRON-TRANSFER; WASTE-ACTIVATED-SLUDGE; METHANE PRODUCTION;
D O I
10.1016/j.cej.2023.148376
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Anaerobic biological treatment of waste activated sludge (WAS) is proven as a low-carbon footprint technology with dual advantages of bio-fuel recovery and sludge stabilization. However, sludge residue after anaerobic biological treatment has been a serious obstacle to build waste-free cities. In this study, sludge residue, iron-rich sludge residue, and iron-rich fermented sludge residue were selected as the raw materials of biochar and the roles of prepared biochar in anaerobic digestion of WAS were investigated. Results indicated that the prepared biochar improved methane production and biochar derived from iron-rich fermented sludge residue (PFF-BC) obtained the best performance, with an increment of 23.4%. Mechanism analysis illustrated that the structural characteristics of PFF-BC were updated, including iron species, defect levels, and specific surface area, which played positive roles in the conversion of intermediate metabolites. Meanwhile, the compositions and electro-activity properties of extracellular polymeric substances were both stimulated by PFF-BC. Correspondingly, the activities of electron transport system and cytochrome c increased by 23.4% and 36.7%, respectively. For microbial communities, the abundances of electroactive microorganisms (such as Anaerolineaceae, Syntrophomonas and Methanosaeta) increased and direct interspecies electron transfer might be established, improving CO2-reduction and acetoclastic methanogenesis pathways. These findings will provide important references for stepwise resource recovery and final disposal of WAS.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Enhancing thermophilic anaerobic co-digestion of sewage sludge and food waste with biogas residue biochar
    Liu, Hongbo
    Wang, Xingkang
    Fang, Yueying
    Lai, Wenjia
    Xu, Suyun
    Lichtfouse, Eric
    RENEWABLE ENERGY, 2022, 188 : 465 - 475
  • [22] Magnetite-contained biochar derived from fenton sludge modulated electron transfer of microorganisms in anaerobic digestion
    Wang, Mingwei
    Zhao, Zhiqiang
    Zhang, Yaobin
    JOURNAL OF HAZARDOUS MATERIALS, 2021, 403
  • [23] Iron-rich sludge biochar triggers sodium percarbonate activation for robust sulfamethoxazole removal: Collaborative roles of reactive oxygen species and electron transfer
    Mo, Zhihua
    Tan, Zexing
    Liang, Jialin
    Guan, Zhijie
    Liao, Xiaojian
    Jian, Jianxiong
    Liu, Hui
    Li, Yihong
    Dai, Wencan
    Sun, Shuiyu
    CHEMICAL ENGINEERING JOURNAL, 2023, 457
  • [24] Adsorption characteristics of arsenic and phosphate onto iron impregnated biochar derived from anaerobic granular sludge
    Myeong Eun Lee
    Pilyong Jeon
    Jong-Gook Kim
    Kitae Baek
    Korean Journal of Chemical Engineering, 2018, 35 : 1409 - 1413
  • [25] Adsorption characteristics of arsenic and phosphate onto iron impregnated biochar derived from anaerobic granular sludge
    Lee, Myeong Eun
    Jeon, Pilyong
    Kim, Jong-Gook
    Baek, Kitae
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2018, 35 (07) : 1409 - 1413
  • [26] Insights into the roles and mechanisms of a green-prepared magnetic biochar in anaerobic digestion of waste activated sludge
    Jin, Hong-Yu
    Yang, Lei
    Ren, Yong-Xiang
    Tang, Cong-Cong
    Zhou, Ai-Juan
    Liu, Wenzong
    Li, Zhihua
    Wang, Aijie
    He, Zhang-Wei
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 896
  • [27] Iron-based biochar derived from waste-activated sludge enhances anaerobic digestion of synthetic salty organic wastewater for methane production
    Che, Linxuan
    Yang, Bo
    Tian, Qing
    Xu, Hui
    BIORESOURCE TECHNOLOGY, 2022, 345
  • [28] Unveiling the mechanisms of peracetic acid activation by iron-rich sludge biochar for sulfamethoxazole degradation with wide adaptability
    Kong, Dejin
    He, Liuyang
    Shen, Shitai
    Li, Yulong
    He, Yezi
    Chen, Zhuqi
    Zhang, Desong
    Chen, Zhendong
    Chen, Xiaoguo
    Wu, Li
    Yang, Lie
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2023, 347
  • [29] Removal of phosphate from aqueous solution using MgO-modified magnetic biochar derived from anaerobic digestion residue
    Liu, Jiwei
    Jiang, Jianguo
    Aihemaiti, Aikelaimu
    Meng, Yuan
    Yang, Meng
    Xu, Yiwen
    Gao, Yuchen
    Zou, Quan
    Chen, Xuejing
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2019, 250
  • [30] IRON-RICH MONTMORILLONITE FORMATION IN SOILS DERIVED FROM SERPENTINITE
    WILDMAN, WE
    JACKSON, ML
    WHITTIG, LD
    SOIL SCIENCE SOCIETY OF AMERICA PROCEEDINGS, 1968, 32 (06): : 787 - &