Simple Cues Lead to a Strong Multi-Object Tracker

被引:33
|
作者
Seidenschwarz, Jenny [1 ]
Braso, Guillem [1 ,2 ]
Serrano, Victor Castro [1 ]
Elezi, Ismail [1 ]
Leal-Taixe, Laura [1 ,3 ]
机构
[1] Tech Univ Munich, Munich, Germany
[2] Munich Ctr Machine Learning, Munich, Germany
[3] NVIDIA, Santa Clara, CA USA
关键词
D O I
10.1109/CVPR52729.2023.01327
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For a long time, the most common paradigm in Multi-Object Tracking was tracking-by-detection (TbD), where objects are first detected and then associated over video frames. For association, most models resourced to motion and appearance cues, e.g., re-identification networks. Recent approaches based on attention propose to learn the cues in a data-driven manner, showing impressive results. In this paper, we ask ourselves whether simple good old TbD methods are also capable of achieving the performance of end-to-end models. To this end, we propose two key ingredients that allow a standard re-identification network to excel at appearance-based tracking. We extensively analyse its failure cases, and show that a combination of our appearance features with a simple motion model leads to strong tracking results. Our tracker generalizes to four public datasets, namely MOT17, MOT20, BDD100k, and DanceTrack, achieving state-of-the-art performance. https://github.com/dvl-tum/GHOST.
引用
收藏
页码:13813 / 13823
页数:11
相关论文
共 50 条
  • [41] GMCP-Tracker: Global Multi-object Tracking Using Generalized Minimum Clique Graphs
    Zamir, Amir Roshan
    Dehghan, Afshin
    Shah, Mubarak
    COMPUTER VISION - ECCV 2012, PT II, 2012, 7573 : 343 - 356
  • [42] Multi-object trajectory tracking
    Han, Mei
    Xu, Wei
    Tao, Hai
    Gong, Yihong
    MACHINE VISION AND APPLICATIONS, 2007, 18 (3-4) : 221 - 232
  • [43] Availability of multi-object operations
    Yu, Haifeng
    Gibbons, Phillip B.
    Nath, Suman
    USENIX ASSOCIATION PROCEEDINGS OF THE 3RD SYMPOSIUM ON NETWORKED SYSTEMS DESIGN & IMPLEMENTATION (NSDI 06), 2006, : 211 - +
  • [44] Multi-Object Spectroscopy with MUSE
    Kelz, Andreas
    Kamann, Sebastian
    Urrutia, Tanya
    Weilbacher, Peter
    Bacon, Roland
    MULTI-OBJECT SPECTROSCOPY IN THE NEXT DECADE: BIG QUESTIONS, LARGE SURVEYS, AND WIDE FIELDS, 2016, 507 : 323 - 327
  • [45] Multi-object tracking in video
    Agbinya, JI
    Rees, D
    REAL-TIME IMAGING, 1999, 5 (05) : 295 - 304
  • [46] Referring Multi-Object Tracking
    Wu, Dongming
    Han, Wencheng
    Wang, Tiancai
    Dong, Xingping
    Zhang, Xiangyu
    Shen, Jianbing
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 14633 - 14642
  • [47] The GEMINI multi-object spectrographs
    AllingtonSmith, J
    Bettess, P
    Chadwick, E
    Content, R
    Davies, R
    Dodsworth, G
    Haynes, R
    Lee, D
    Lewis, I
    Webster, J
    Atad, E
    Beard, S
    Bennett, R
    Ellis, M
    Hastings, P
    Williams, P
    Bond, T
    Crampton, D
    Davidge, T
    Fletcher, M
    Leckie, B
    Morbey, C
    Murowinski, R
    Roberts, S
    Saddlemyer, L
    Sebesta, J
    Stilburn, J
    Szeto, K
    WIDE-FIELD SPECTROSCOPY, 1997, 212 : 73 - 79
  • [48] LSTM MULTIPLE OBJECT TRACKER COMBINING MULTIPLE CUES
    Liang, Yiming
    Zhou, Yue
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 2351 - 2355
  • [49] FALCON:: multi-object AO
    Gendron, E
    Assémat, F
    Hammer, F
    Jagourel, P
    Chemla, F
    Laporte, P
    Puech, M
    Marteaud, M
    Zamkotsian, F
    Liotard, A
    Conan, JM
    Fusco, T
    Hubin, N
    COMPTES RENDUS PHYSIQUE, 2005, 6 (10) : 1110 - 1117
  • [50] Multi-object spectrograph TAUMOK
    Ball, M
    Ziener, R
    WIDE-FIELD SPECTROSCOPY, 1997, 212 : 117 - 118